Flow Behavior Behind a Circular Cylinder by DBD Plasma Actuators in Low Reynolds Number

Author(s):  
Shunsuke Yamada ◽  
Koui Shibata ◽  
Hitoshi Ishikawa ◽  
Shinji Honami ◽  
Masahiro Motosuke
2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Rolf Sondergaard ◽  
Mitch Wolff ◽  
Rich Anthony

This paper presents experimental work comparing several Dielectric Barrier Discharge (DBD) plasma actuator configurations for low Reynolds number separation control. Actuators studied here are being investigated for use in a closed loop separation control system. The plasma actuators were fabricated in the U.S. Air Force Research Laboratory Propulsion Directorate’s thin film laboratory and applied to a low Reynolds number airfoil that exhibits similar suction surface behavior to those observed on Low Pressure (LP) Turbine blades. In addition to typical asymmetric arrangements producing downstream jets, one electrode configurations was designed to produce an array of off axis jets, and one produced a spanwise array of linear vertical jets in order to generate vorticity and improved boundary layer to freestream mixing. The actuators were installed on an airfoil and their performance compared by flow visualization, surface stress sensitive film (S3F), and drag measurements. The experimental data provides a clear picture of the potential utility of each design. Experiments were carried out at four Reynolds numbers, 1.4 × 105, 1.0 × 105, 6.0 × 104, and 5.0 × 104 at a-1.5 deg angle of attack. Data was taken at the AFRL Propulsion Directorate’s Low Speed Wind Tunnel (LSWT) facility.


2013 ◽  
Vol 736 ◽  
pp. 414-443 ◽  
Author(s):  
Y. Ueda ◽  
T. Kida ◽  
M. Iguchi

AbstractThe long-time viscous flow about two identical rotating circular cylinders in a side-by-side arrangement is investigated using an adaptive numerical scheme based on the vortex method. The Stokes solution of the steady flow about the two-cylinder cluster produces a uniform stream in the far field, which is the so-called Jeffery’s paradox. The present work first addresses the validation of the vortex method for a low-Reynolds-number computation. The unsteady flow past an abruptly started purely rotating circular cylinder is therefore computed and compared with an exact solution to the Navier–Stokes equations. The steady state is then found to be obtained for $t\gg 1$ with ${\mathit{Re}}_{\omega } {r}^{2} \ll t$, where the characteristic length and velocity are respectively normalized with the radius ${a}_{1} $ of the circular cylinder and the circumferential velocity ${\Omega }_{1} {a}_{1} $. Then, the influence of the Reynolds number ${\mathit{Re}}_{\omega } = { a}_{1}^{2} {\Omega }_{1} / \nu $ about the two-cylinder cluster is investigated in the range $0. 125\leqslant {\mathit{Re}}_{\omega } \leqslant 40$. The convection influence forms a pair of circulations (called self-induced closed streamlines) ahead of the cylinders to alter the symmetry of the streamline whereas the low-Reynolds-number computation (${\mathit{Re}}_{\omega } = 0. 125$) reaches the steady regime in a proper inner domain. The self-induced closed streamline is formed at far field due to the boundary condition being zero at infinity. When the two-cylinder cluster is immersed in a uniform flow, which is equivalent to Jeffery’s solution, the streamline behaves like excellent Jeffery’s flow at ${\mathit{Re}}_{\omega } = 1. 25$ (although the drag force is almost zero). On the other hand, the influence of the gap spacing between the cylinders is also investigated and it is shown that there are two kinds of flow regimes including Jeffery’s flow. At a proper distance from the cylinders, the self-induced far-field velocity, which is almost equivalent to Jeffery’s solution, is successfully observed in a two-cylinder arrangement.


2020 ◽  
Vol 95 ◽  
pp. 102997 ◽  
Author(s):  
Rahul Mishra ◽  
Atul Soti ◽  
Rajneesh Bhardwaj ◽  
Salil S. Kulkarni ◽  
Mark C. Thompson

Sign in / Sign up

Export Citation Format

Share Document