Reduced Order Modeling of Parachute Systems Using Large Scale Finite Element Models

Author(s):  
Richard Charles ◽  
Michael Accorsi ◽  
Rahul Dantulwar
Author(s):  
Christian Gogu ◽  
Anirban Chaudhuri ◽  
Christian Bes

Many sampling-based approaches are currently available for calculating the reliability of a design. The most efficient methods can achieve reductions in the computational cost by one to several orders of magnitude compared to the basic Monte Carlo method. This paper is specifically targeted at sampling-based approaches for reliability analysis, in which the samples represent calls to expensive finite element models. The aim of this paper is to illustrate how these methods can further benefit from reduced order modeling to achieve drastic additional computational cost reductions, in cases where the reliability analysis is carried out on finite element models. Standard Monte Carlo, importance sampling, separable Monte Carlo and a combined importance separable Monte Carlo approach are presented and coupled with reduced order modeling. An adaptive construction of the reduced basis models is proposed. The various approaches are compared on a thermal reliability design problem, where the coupling with the adaptively constructed reduced order models is shown to further increase the computational efficiency by up to a factor of six.


Author(s):  
Yener N. Yeni ◽  
Do-Gyoon Kim ◽  
Roger R. Zauel ◽  
Evan M. Johnson ◽  
Dianna D. Cody

Vertebral fractures are among the most common and debilitating fractures. Structural organization of cancellous and cortical bone in a vertebra and their local properties are important factors that determine the strength of a vertebra. Linear finite element models utilizing Quantitative Computed Tomography (QCT) images have proven useful for predicting vertebral strength and are potentially useful in predicting risk of fracture in a clinical setting [1]. However, the amount of architectural detail in these models is not sufficient for studying trabecular stress and strains, and their relationship with the microscopic structure, which is important for understanding the mechanisms behind vertebral fragility.


1996 ◽  
Author(s):  
Francois Hemez ◽  
Charbel Farhat ◽  
Emmanuele Decaux ◽  
Jacques Duysens ◽  
Pascal L

Sign in / Sign up

Export Citation Format

Share Document