SYSTEM LEVEL SIMULATIONS OF MEMS BASED ON REDUCED ORDER FINITE ELEMENT MODELS

2003 ◽  
Vol 04 (02) ◽  
pp. 385-388 ◽  
Author(s):  
F. BENNINI ◽  
J. MEHNER ◽  
W. DÖTZEL
2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Dani Liu ◽  
Bahareh Shakibajahromi ◽  
Genevieve Dion ◽  
David Breen ◽  
Antonios Kontsos

The mechanical behavior of knitted textiles is simulated using finite element analysis (FEA). Given the strong coupling between geometrical and physical aspects that affect the behavior of this type of engineering materials, there are several challenges associated with the development of computational tools capable of enabling physics-based predictions, while keeping the associated computational cost appropriate for use within design optimization processes. In this context, this paper investigates the relative contribution of a number of computational factors to both local and global mechanical behavior of knitted textiles. Specifically, different yarn-to-yarn interaction definitions in three-dimensional (3D) finite element models are compared to explore their relative influence on kinematic features of knitted textiles' mechanical behavior. The relative motion between yarns identified by direct numerical simulations (DNS) is then used to construct reduced order models (ROMs), which are shown to be computationally more efficient and providing comparable predictions of the mechanical performance of knitted textiles that include interfacial effects between yarns.


Author(s):  
François Moyroud ◽  
Torsten Fransson ◽  
Georges Jacquet-Richardet

The high performance bladed-disks used in today’s turbomachines must meet strict standards in terms of aeroelastic stability and resonant response level. One structural characteristic that can significantly impact on both these area is that of bladed-disk mistuning. To predict the effects of mistuning, computationally efficient methods are necessary to make it feasible, especially in an industrial environment, to perform free vibration and forced response analyses of full assembly finite element models. Due to the size of typical finite element models of industrial bladed-disks, efficient reduction techniques must be used to systematically produce reduced order models. The objective of this paper is to compare two prevalent reduction methods on representative test rotors, including a modern design industrial shrouded bladed-disk, in terms of accuracy (for frequencies and mode shapes), reduction order, computational efficiency, sensitivity to inter-sector elastic coupling, and ability to capture the phenomenon of mode localization. The first reduction technique employs a modal reduction approach with a modal basis consisting of mode shapes of the tuned bladed-disk which can be obtained from a classical cyclic symmetric modal analysis. The second reduction technique is based on a Craig and Bampton substructuring and reduction approach. The results show a perfect agreement between the two reduced order models and the non-reduced finite element model. It is found that the phenomena of mode localization is equally well predicted by the two reduction models. In terms of computational cost, reductions from 1 to 2 orders of magnitude are obtained for the industrial bladed-disk, with the modal reduction method being the most computationally efficient approach.


PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Morteza Karamooz Mahdiabadi ◽  
Francesco De Crescenzo ◽  
Christian H. Meyer ◽  
Daniel J. Rixen

2004 ◽  
Vol 126 (4) ◽  
pp. 472-476 ◽  
Author(s):  
Prabhu Sathyamurthy ◽  
Manoj Nagulapally ◽  
Rajesh Nair

The need for compact models for ICs is a well-recognized problem in electronics cooling simulations of systems containing multiple PCBs and many devices per board. The disparate length scales inherent in the problem and the necessity of resolving these size scales render the computational problem intractable. Many resistance-capacitance (RC) network compact models have been proposed in the literature. We present a methodology to automatically construct both the topology and characteristics of the reduced-order or compact models of devices [primarily Integrated Circuit (IC) packages] for use in system-level simulations using the multigrid operator. The multigrid technique has been extensively used over the past 20 years to accelerate the solution of linear systems. In addition to automatically generating both the RC network topology and its values, the procedure is general enough to be applicable for complex IC device types (such as multichip modules), stack-up dies, distributed sources on the die, DC-DC converters, and devices such as hard disk drives.


Author(s):  
Christian Gogu ◽  
Anirban Chaudhuri ◽  
Christian Bes

Many sampling-based approaches are currently available for calculating the reliability of a design. The most efficient methods can achieve reductions in the computational cost by one to several orders of magnitude compared to the basic Monte Carlo method. This paper is specifically targeted at sampling-based approaches for reliability analysis, in which the samples represent calls to expensive finite element models. The aim of this paper is to illustrate how these methods can further benefit from reduced order modeling to achieve drastic additional computational cost reductions, in cases where the reliability analysis is carried out on finite element models. Standard Monte Carlo, importance sampling, separable Monte Carlo and a combined importance separable Monte Carlo approach are presented and coupled with reduced order modeling. An adaptive construction of the reduced basis models is proposed. The various approaches are compared on a thermal reliability design problem, where the coupling with the adaptively constructed reduced order models is shown to further increase the computational efficiency by up to a factor of six.


Sign in / Sign up

Export Citation Format

Share Document