Hypersonic Three-Dimensional Boundary Layer Transition on a Cone at Angle of Attack

Author(s):  
Joel Gronvall ◽  
Heath Johnson ◽  
Graham Candler
2015 ◽  
Vol 798 ◽  
pp. 627-631 ◽  
Author(s):  
Ling Zhou ◽  
Chao Yan ◽  
Zi Hui Hao ◽  
Wei Xuan Kong

A “laminar + transition criteria” model utilizingReθ/MeandReCFcriteria in conjunction with an intermittency functionΓis developed in this paper. With pretreated computational grid and total enthalpyh0=(h0,∞)maxcriteria the boundary layer edge and crossflow velocity can be obtained by using parallel methodology. Validation is accomplished via HIFiRE-5 and a blunt cone with small angle of attack. Results show that computedReθ/MeandReCFdistributions are similar to theN-factor for streamwise instability and crossflow instability from linear PSE methods. The shape and trend of transition regions predicted by the “laminar + transition criteria” model in HIFiRE-5 and blunt cone are in good agreement with the experiment and DNS. However, for the transition induced by inflection point on streamwise velocity profiles, using criteria related to boundary layer thickness is inappropriate and can predict transition onset prematurely.


1999 ◽  
Vol 399 ◽  
pp. 85-115 ◽  
Author(s):  
MUJEEB R. MALIK ◽  
FEI LI ◽  
MEELAN M. CHOUDHARI ◽  
CHAU-LYAN CHANG

Crossflow instability of a three-dimensional boundary layer is a common cause of transition in swept-wing flows. The boundary-layer flow modified by the presence of finite-amplitude crossflow modes is susceptible to high-frequency secondary instabilities, which are believed to harbinger the onset of transition. The role of secondary instability in transition prediction is theoretically examined for the recent swept-wing experimental data by Reibert et al. (1996). Exploiting the experimental observation that the underlying three-dimensional boundary layer is convectively unstable, non-linear parabolized stability equations are used to compute a new basic state for the secondary instability analysis based on a two-dimensional eigenvalue approach. The predicted evolution of stationary crossflow vortices is in close agreement with the experimental data. The suppression of naturally dominant crossflow modes by artificial roughness distribution at a subcritical spacing is also confirmed. The analysis reveals a number of secondary instability modes belonging to two basic families which, in some sense, are akin to the ‘horseshoe’ and ‘sinuous’ modes of the Görtler vortex problem. The frequency range of the secondary instability is consistent with that measured in earlier experiments by Kohama et al. (1991), as is the overall growth of the secondary instability mode prior to the onset of transition (e.g. Kohama et al. 1996). Results indicate that the N-factor correlation based on secondary instability growth rates may yield a more robust criterion for transition onset prediction in comparison with an absolute amplitude criterion that is based on primary instability alone.


Sign in / Sign up

Export Citation Format

Share Document