Computational Fluid Dynamics Investigation of Solar Chimney Power Plant

Author(s):  
Fanlong Meng ◽  
Andreas Gross ◽  
Hermann F. Fasel
2021 ◽  
Vol 7 ◽  
pp. 4555-4565
Author(s):  
Mohammad Reza Torabi ◽  
Mirolah Hosseini ◽  
Omid Ali Akbari ◽  
Hamid Hassanzadeh Afrouzi ◽  
Davood Toghraie ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fei Cao ◽  
Huashan Li ◽  
Yang Zhang ◽  
Liang Zhao

The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights.


Author(s):  
Sellami Ali ◽  
Benlahcene Djaouida ◽  
Abdelmoumène Hakim Benmachiche ◽  
Zeroual Aouachria

2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


Author(s):  
Sreelekha Arun

The energy consumption on global scale is continuously increasing, resulting in rapid use of energy resources available. Solar chimney power generation technology hence began to get growing attention as its basic model needs no depleting resources like fossil fuels for its functioning but only uses sunlight and air as a medium. It takes the advantage of the chimney effect and the temperature difference in the collector that produces negative pressure to cause the airflow in the system, converting solar energy into mechanical energy in order to drive the air turbine generator situated at the base of the chimney. Solar Chimney Power Plant (SCPP) brings together the solar thermal technology, thermal storage technology, chimney technology and air turbine power generation technology. However, studies have shown that even if the chimney is as high as 1000 m, the efficiency achievable is only around 3%. Hence, this review paper intents to put together the new technological advancement that aims to improve the efficiency of SCPP.


Sign in / Sign up

Export Citation Format

Share Document