This review uses a more holistic approach to provide comprehensive information and up-to-date knowledge on solar energy development in India and scientific and technological advancement. This review describes the types of solar photovoltaic (PV) systems, existing solar technologies, and the structure of PV systems. Substantial emphasis has been given to understanding the potential impacts of COVID-19 on the solar energy installed capacity. In addition, we evaluated the prospects of solar energy and the revival of growth in solar energy installation post-COVID-19. Further, we described the challenges caused by transitions and cloud enhancement on smaller and larger PV systems on the solar power amended grid-system. While the review is focused on evaluating the solar energy growth in India, we used a broader approach to compare the existing solar technologies available across the world. The need for recycling waste from solar energy systems has been emphasized. Improved PV cell efficiencies and trends in cost reductions have been provided to understand the overall growth of solar-based energy production. Further, to understand the existing technologies used in PV cell production, we have reviewed monocrystalline and polycrystalline cell structures and their limitations. In terms of solar energy production and the application of various solar technologies, we have used the latest available literature to cover stand-alone PV and on-grid PV systems. More than 5000 trillion kWh/year solar energy incidents over India are estimated, with most parts receiving 4–7 kWh/m2. Currently, energy consumption in India is about 1.13 trillion kWh/year, and production is about 1.38 trillion kWh/year, which indicates production capacities are slightly higher than actual demand. Out of a total of 100 GW of installed renewable energy capacity, the existing solar capacity in India is about 40 GW. Over the past ten years, the solar energy production capacity has increased by over 24,000%. By 2030, the total renewable energy capacity is expected to be 450 GW, and solar energy is likely to play a crucial role (over 60%). In the wake of the increased emphasis on solar energy and the substantial impacts of COVID-19 on solar energy installations, this review provides the most updated and comprehensive information on the current solar energy systems, available technologies, growth potential, prospect of solar energy, and need for growth in the solar waste recycling industry. We expect the analysis and evaluation of technologies provided here will add to the existing literature to benefit stakeholders, scientists, and policymakers.