Tracking a Moving Target by a Fixed-wing UAV Based on Sliding Mode Control

Author(s):  
Mingfeng Zhang ◽  
Hugh H. Liu
Author(s):  
Mark Bacon ◽  
Nejat Olgac

Control of autonomous agent swarms is studied for targeted flocking exercises. The desired decentralized control also requires robustness against modeling uncertainties and bounded unknown forces. In this analysis, we consider the task of robustly driving multiple agents to a moving ‘target region’, as repulsive interactions help spread out the agents. An unconventional form of sliding mode control is implemented to provide the robust attraction towards the region’s center. For robustness a ‘boundary layer’ is conceived, which corresponds to the desired target region. The attraction is intentionally softened inside this target region, allowing agents to create a final formation utilizing their repulsion forces. Examples are given for moving circular and elliptical regions which illustrate the effectiveness of the proposed strategy.


2007 ◽  
Vol 129 (5) ◽  
pp. 749-754 ◽  
Author(s):  
Jingyi Yao ◽  
Raúl Ordóñez ◽  
Veysel Gazi

In this paper, we present a stable and decentralized control strategy for multiagent systems (swarms) to capture a moving target in a specific formation. The coordination framework uses artificial potentials to take care of both tracking and formation tasks. First, a basic controller is designed based on a kinematic model. After that, sliding mode control technique is used to force the agents with general vehicle dynamics to obey the required motion. Finally, specific potential functions are discussed and corresponding simulation results are given.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Hashim Obeid Ahmed ◽  
Martino O. Ajangnay ◽  
Shamboul A. Mohamed ◽  
Matthew W. Dunnigan

2009 ◽  
Vol 129 (7) ◽  
pp. 1389-1396 ◽  
Author(s):  
Misawa Kasahara ◽  
Yuki Kanai ◽  
Ryoko Shiraki ◽  
Yasuchika Mori

Sign in / Sign up

Export Citation Format

Share Document