modeling uncertainties
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 122)

H-INDEX

27
(FIVE YEARS 6)

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 912-926
Author(s):  
Mohammad Ch. Basim ◽  
Farzaneh Pourreza ◽  
Meysam Mousazadeh ◽  
Arash Akbari Hamed

Author(s):  
Valeriy Eskov ◽  
V. Galkin ◽  
T. Gavrilenko ◽  
D. Yushkevich

2021 ◽  
Author(s):  
Jose Agustin Garcia ◽  
Francisco Javier Acero ◽  
Javier Portero

Abstract A statistical study was made of the temporal trend in extreme temperatures in the region of Extremadura (Spain) during the period 1981-2015 using a Regional Climate Model. For this purpose, a dataset of extreme temperature was obtained from the Weather Research and Forecating (WRF) Regional Climate Model. This dataset was then subjected to a statistical study using a Bayesian hierarchical spatio-temporal model with a Generalized Extreme Value (GEV) parametrization of the extreme data. The Bayesian model was implemented in a Markov chain Monte Carlo framework that allows the posterior distribution of the parameters that intervene in the model to be estimated. The role of the altitude dependence of the temperature was considered in the proposed model. The results for the spatial-trend parameter lend confidence to the model since they are consistent with the dry adiabatic gradient. Furthermore, the statistical model showed a slight negative trend for the location parameter. This unexpected result may be due to the internal and modeling uncertainties in the WRF model. The shape parameter was negative, meaning that there is an upper bound for extreme temperatures in the model.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 331
Author(s):  
Zhenle Dong ◽  
Yinghao Yang ◽  
Geqiang Li ◽  
Zheng Zhang

For the demands of a high precision motion control of an uncertain electro-mechanical launching platform, a novel integrated error constraint asymptotic control in the presence of parametric uncertainties and uncertain disturbance is proposed, of which the barrier function method and a continuous asymptotic control design are integrated for the first time. The former technique can effectively avoid excessive tracking errors at the transient phase, which is caused by the disturbance and the large uncertain system parameters’ deviation between the initial estimated value and the actual value, by selecting a proper barrier threshold, while the latter technique can handle the uncertain disturbance to achieve asymptotic tracking. A rigorous stability analysis is given to illustrate the theoretical performance. In addition, as a supplementary measure, repetitive control is employed to estimate and compensate the possible periodic-like disturbance under certain conditions. Two experimental cases on a prototype of a launching platform demonstrate the effectiveness of the proposed controller.


2021 ◽  
Author(s):  
Abdul Saboor Khan ◽  
Salahaldeen Alqallabi ◽  
Anish Phade ◽  
Arne Skorstad ◽  
Faisal Al-Jenaibi ◽  
...  

Abstract The aim of this study is to demonstrate the value of an integrated ensemble-based modeling approach for multiple reservoirs of varying complexity. Three different carbonate reservoirs are selected with varying challenges to showcase the flexibility of the approach to subsurface teams. Modeling uncertainties are included in both static and dynamic domains and valuable insights are attained in a short reservoir modeling cycle time. Integrated workflows are established with guidance from multi-disciplinary teams to incorporate recommended static and dynamic modeling processes in parallel to overcome the modeling challenges of the individual reservoirs. Challenges such as zonal communication, presence of baffles, high permeability streaks, communication from neighboring fields, water saturation modeling uncertainties, relative permeability with hysteresis, fluid contact depth shift etc. are considered when accounting for uncertainties. All the uncertainties in sedimentology, structure and dynamic reservoir parameters are set through common dialogue and collaboration between subsurface teams to ensure that modeling best practices are adhered to. Adaptive pluri-Gaussian simulation is used for facies modeling and uncertainties are propagated in the dynamic response of the geologically plausible ensembles. These equiprobable models are then history-matched simultaneously using an ensemble-based conditioning tool to match the available observed field production data within a specified tolerance; with each reservoir ranging in number of wells, number of grid cells and production history. This approach results in a significantly reduced modeling cycle time compared to the traditional approach, regardless of the inherent complexity of the reservoir, while giving better history-matched models that are honoring the geology and correlations in input data. These models are created with only enough detail level as per the modeling objectives, leaving more time to extract insights from the ensemble of models. Uncertainties in data, from various domains, are not isolated there, but rather propagated throughout, as these might have an important role in another domain, or in the total response uncertainty. Similarly, the approach encourages a collaborative effort in reservoir modeling and fosters trust between geo-scientists and engineers, ascertaining that models remain consistent across all subsurface domains. It allows for the flexibility to incorporate modeling practices fit for individual reservoirs. Moreover, analysis of the history-matched ensemble shows added insights to the reservoirs such as the location and possible extent of features like high permeability streaks and baffles that are not explicitly modeled in the process initially. Forecast strategies further run on these ensembles of equiprobable models, capture realistic uncertainties in dynamic responses which can help make informed reservoir management decisions. The integrated ensemble-based modeling approach is successfully applied on three different reservoir cases, with different levels of complexity. The fast-tracked process from model building to decision making enabled rapid insights for all domains involved.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3067
Author(s):  
Mohammed Abdulhakim Al-Absi ◽  
Rui Fu ◽  
Ki-Hwan Kim ◽  
Young-Sil Lee ◽  
Ahmed Abdulhakim Al-Absi ◽  
...  

Recently, Unmanned Aerial Vehicles (UAVs) have made significant impacts on our daily lives with the advancement of technologies and their applications. Tracking UAVs have become more important because they not only provide location-based services, but are also faced with serious security threats and vulnerabilities. UAVs are smaller in nature, move with high speed, and operate in a low-altitude environment, which makes it conceivable to track UAVs using fixed or mobile radars. Kalman Filter (KF)-based methodologies are widely used for extracting valuable trajectory information from samples composed of noisy information. As UAVs’ trajectories resemble uncertain behavior, the traditional KF-based methodologies have poor tracking accuracy. Recently, the Diffusion-Map-based KF (DMK) was introduced for modeling uncertainties in the environment without prior knowledge. However, the model has poor accuracy when operating in environments with higher noise. In order to achieve better tracking performance, this paper presents the Uncertainty and Error-Aware KF (UEAKF) for tracking UAVs. The UEAKF-based tracking method provides a good tradeoff among preceding estimate confidence and forthcoming measurement under dynamic environments; the resulting filter is robust and nonlinear in nature. The experimental results showed that the UEAKF-based UAV tracking model achieves much better Root Mean Square Error (RMSE) performance compared to the existing particle filter-based and DMK-based UAV tracking models.


2021 ◽  
Vol 923 (2) ◽  
pp. 175
Author(s):  
Askar B. Abdikamalov ◽  
Dimitry Ayzenberg ◽  
Cosimo Bambi ◽  
Honghui Liu ◽  
Ashutosh Tripathi

Abstract In this paper we present relxilldgrad_nk, a relativistic reflection model in which the electron density of the accretion disk is allowed to have a radial power-law profile. The ionization parameter also has a nonconstant radial profile and is calculated self-consistently from the electron density and the emissivity. We show the impact of the implementation of the electron density gradient in our model by analyzing a NuSTAR spectrum of the Galactic black hole in EXO 1846–031 during its last outburst in 2019 and a putative future observation of the same source with Athena and eXTP. For the NuSTAR spectrum, we find that the new model provides a better fit, but there is no significant difference in the estimation of the model parameters. For the Athena+eXTP simulation, we find that a model without a disk density profile is unsuitable to test the spacetime metric around the compact object in the sense that modeling uncertainties can incorrectly lead to finding a nonvanishing deformation from the Kerr solution.


2021 ◽  
Vol 922 (2) ◽  
pp. 269
Author(s):  
Geert Raaijmakers ◽  
Samaya Nissanke ◽  
Francois Foucart ◽  
Mansi M. Kasliwal ◽  
Mattia Bulla ◽  
...  

Abstract In recent years, there have been significant advances in multimessenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r-process nucleosynthesis in the ejected material during and after merger, the so-called kilonova, and particularly on black hole−neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole or a neutron star. We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters.


2021 ◽  
Author(s):  
Zhenyu Zhang ◽  
Joel Arnault ◽  
Patrick Laux ◽  
Ning Ma ◽  
Jianhui Wei ◽  
...  

AbstractNumerical climate models have been upgraded by the improved description of terrestrial hydrological processes across different scales. The goal of this study is to explore the role of terrestrial hydrological processes on land–atmosphere interactions within the context of modeling uncertainties related to model physics parameterization. The models applied are the Weather Research and Forecasting (WRF) model and its coupled hydrological modeling system WRF-Hydro, which depicts the lateral terrestrial hydrological processes and further allows their feedback to the atmosphere. We conducted convection-permitting simulations (3 km) over the Heihe River Basin in Northwest China for the period 2008–2010, and particularly focused on its upper reach area of complex high mountains. In order to account for the modeling uncertainties associated with model physics parameterization, an ensemble of simulations is generated by varying the planetary boundary layer (PBL) schemes. We embedded the fully three-dimensional atmospheric water tagging method in both WRF and WRF-Hydro for quantifying the strength of land–atmosphere interactions. The impact of PBL parameterization on land–atmosphere interactions is evaluated through its direct effect on vertical mixing. Results suggest that enabled lateral terrestrial flow in WRF-Hydro distinctly increases soil moisture and evapotranspiration near the surface in the high mountains, thereby modifies the atmospheric condition regardless of the applied PBL scheme. The local precipitation recycling ratio in the study area increases from 1.52 to 1.9% due to the description of lateral terrestrial flow, and such positive feedback processes are irrespective of the modeling variability caused by PBL parameterizations. This study highlights the non-negligible contribution of lateral terrestrial flow to local precipitation recycling, indicating the potential of the fully coupled modeling in land–atmosphere interactions research.


2021 ◽  
Vol 13 (22) ◽  
pp. 4612
Author(s):  
Yu Chen ◽  
Luping Xu ◽  
Guangmin Wang ◽  
Bo Yan ◽  
Jingrong Sun

As a new-style filter, the smooth variable structure filter (SVSF) has attracted significant interest. Based on the predictor-corrector method and sliding mode concept, the SVSF is more robust in the face of modeling errors and uncertainties compared to the Kalman filter. Since the estimation performance is usually insufficient in real cases where the measurement vector is of fewer dimensions than the state vector, an improved SVSF (ISVSF) is proposed by combining the existing SVSF with Bayesian theory. The ISVSF contains two steps: firstly, a preliminary estimation is performed by SVSF. Secondly, Bayesian formulas are adopted to improve the estimation for higher accuracy. The ISVSF shows high robustness in dealing with modeling uncertainties and noise. It is noticeable that ISVSF could deliver satisfying performance even if the state of the system is undergoing a sudden change. According to the simulation results of target tracking, the proposed ISVSF performance can be better than that obtained with existing filters.


Sign in / Sign up

Export Citation Format

Share Document