Detached Eddy Simulation of the DLR-F11 wing/body Configuration as a Contribution to the 2nd AIAA CFD High Lift Prediction Workshop

Author(s):  
Jamie Alberto Escobar ◽  
Camilo A. Suarez ◽  
Carlos Silva ◽  
Omar D. Lopez ◽  
Juan S. Velandia ◽  
...  
Author(s):  
Sébastien Deck ◽  
Fabien Gand ◽  
Vincent Brunet ◽  
Saloua Ben Khelil

This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed.


2015 ◽  
Vol 52 (4) ◽  
pp. 1112-1121 ◽  
Author(s):  
Jaime A. Escobar ◽  
Camilo A. Suarez ◽  
Carlos Silva ◽  
Omar D. López ◽  
Juan S. Velandia ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhao Yang ◽  
Jie Li ◽  
Jing Jin ◽  
Heng Zhang ◽  
Youxu Jiang

In order to simplify the manufacturing process or because of the limitation of the propulsion system, business jet, small civil airplane, and turboprop aircraft are always designed without leading-edge slats, which poses a great challenge to the flight safety during takeoff and landing. Focusing on the low-speed stall and poststall conditions, we investigated the aerodynamic characteristics and flow mechanism of high-lift configuration without slats using an improved delayed detached eddy simulation (IDDES) model which is validated by numerical simulations of the Common Research Model (CRM). Based on the analysis of the calculated results, conclusion can be made that the stall behavior of the configurations is directly related to the onset and evaluation of flow separation on the suction side. And through further research, an efficient evaluation method that is capable of qualitatively predicting the stall performance of two-element high-lift configuration by stall angle distribution of wing sections is proposed. By using the evaluation method, together with design rules summarized from the present study, high-lift configuration with mild-stall characteristic can be obtained in the preliminary stage of design.


Sign in / Sign up

Export Citation Format

Share Document