Free-Vortex Wake and CFD Simulation of a Small Rotor for a Quadcopter at Hover

2019 ◽  
Author(s):  
Andres M. Pérez ◽  
Omar Lopez ◽  
Svetlana V. Poroseva
Author(s):  
David Marten ◽  
Matthew Lennie ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

The development of the next generation of large multi-megawatt wind turbines presents exceptional challenges to the applied aerodynamic design tools. Because their operation is often outside the validated range of current state of the art momentum balance models, there is a demand for more sophisticated, but still computationally efficient simulation methods. In contrast to the Blade Element Momentum Method (BEM) the Lifting Line Theory (LLT) models the wake explicitly by a shedding of vortex rings. The wake model of freely convecting vortex rings induces a time-accurate velocity field, as opposed to the annular averaged induction that is computed from the momentum balance, with computational costs being magnitudes smaller than those of a full CFD simulation. The open source code QBlade, developed at the Berlin Institute of Technology, was recently extended with a Lifting Line - Free Vortex Wake algorithm. The main motivation for the implementation of a LLT algorithm into QBlade is to replace the unsteady BEM code AeroDyn in the coupling to FAST to achieve a more accurate representation of the unsteady aerodynamics and to gain more information on the evolving rotor wake and flow-field structure. Therefore, optimization for computational efficiency was a priority during the integration and the provisions that were taken will be presented in short. The implemented LLT algorithm is thoroughly validated against other benchmark BEM, LLT and panel method codes and experimental data from the MEXICO and NREL Phase VI tests campaigns. By integration of a validated LLT code within QBlade and its database, the setup and simulation of LLT simulations is greatly facilitated. Simulations can be run from already existing rotor models without any additional input. Example use cases envisaged for the LLT code include; providing an estimate of the error margin of lower fidelity codes i.e. unsteady BEM, or providing a baseline solution to check the soundness of higher fidelity CFD simulations or experimental results.


Author(s):  
David Marten ◽  
Matthew Lennie ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

The development of the next generation of large multimegawatt wind turbines presents exceptional challenges to the applied aerodynamic design tools. Because their operation is often outside the validated range of current state-of-the-art momentum balance models, there is a demand for more sophisticated, but still computationally efficient simulation methods. In contrast to the blade element momentum method (BEM), the lifting line theory (LLT) models the wake explicitly by a shedding of vortex rings. The wake model of freely convecting vortex rings induces a time-accurate velocity field, as opposed to the annular-averaged induction that is computed from the momentum balance, with computational costs being magnitudes smaller than those of a full computational fluid dynamics (CFD) simulation. The open source code qblade, developed at the Berlin Institute of Technology, was recently extended with a lifting line-free vortex wake algorithm. The main motivation for the implementation of an LLT algorithm into qblade is to replace the unsteady BEM code aerodyn in the coupling to fast to achieve a more accurate representation of the unsteady aerodynamics and to gain more information on the evolving rotor wake and flow-field structure. Therefore, optimization for computational efficiency was a priority during the integration and the provisions that were taken will be presented in short. The implemented LLT algorithm is thoroughly validated against other benchmark BEM, LLT, and panel method codes and experimental data from the MEXICO and National Renewable Energy Laboratory (NREL) Phase VI tests campaigns. By integration of a validated LLT code within qblade and its database, the setup and simulation of LLT simulations are greatly facilitated. Simulations can be run from already existing rotor models without any additional input. Example use cases envisaged for the LLT code include: providing an estimate of the error margin of lower fidelity codes, i.e., unsteady BEM, or providing a baseline solution to check the soundness of higher fidelity CFD simulations or experimental results.


2019 ◽  
Vol 11 (5) ◽  
pp. 053307
Author(s):  
Bofeng Xu ◽  
Bingbing Liu ◽  
Xin Cai ◽  
Yue Yuan ◽  
Zhenzhou Zhao ◽  
...  

AIAA Journal ◽  
2020 ◽  
Vol 58 (11) ◽  
pp. 4672-4685
Author(s):  
D. Marten ◽  
C. O. Paschereit ◽  
X. Huang ◽  
M. Meinke ◽  
W. Schröder ◽  
...  

Author(s):  
Sebastian Perez-Becker ◽  
Joseph Saverin ◽  
David Marten ◽  
Jörg Alber ◽  
George Pechlivanoglou ◽  
...  

This paper presents the results of a fatigue load evaluation from aeroelastic simulations of a multi-megawatt wind turbine. Both the Blade Element Momentum (BEM) and the Lifting Line Free Vortex Wake (LLFVW) methods were used to compute the aerodynamic forces. The loads in selected turbine components, calculated from NREL’s FAST v8 using the aerodynamic solver AeroDyn, are compared to the loads obtained using the LLFVW aerodynamics formulation in QBlade. The DTU 10 MW Reference Wind Turbine is simulated in power production load cases at several wind speeds under idealized conditions. The aerodynamic forces and turbine loads are evaluated in detail, showing very good agreement between both codes. Additionally, the turbine is simulated under realistic conditions according to the current design standards. Fatigue loads derived from load calculations using both codes are compared when the turbine is controlled with a basic pitch and torque controller. It is found that the simulations performed with the BEM method generally predict higher fatigue loading in the turbine components. A higher pitch activity is also predicted with the BEM simulations. The differences are larger for wind speeds around rated wind speed. Furthermore, the fatigue reduction potential of the individual pitch control (IPC) strategy is examined and compared when using the two different codes. The IPC strategy shows a higher load reduction of the out-of-plane blade root bending moments when simulated with the LLFVW method. This is accompanied with higher pitch activity at the actuation frequency of the IPC strategy.


2019 ◽  
Vol 136 ◽  
pp. 607-620 ◽  
Author(s):  
Kelsey Shaler ◽  
Krista M. Kecskemety ◽  
Jack J. McNamara

Sign in / Sign up

Export Citation Format

Share Document