Correction: Analysis of Coherent Structures over a Smooth Wall Turbulent Boundary Layer in Pressure Gradient Using Spectral Proper Orthogonal Decomposition

2021 ◽  
Author(s):  
Vidya Vishwanathan ◽  
Danny Fritsch ◽  
Todd K. Lowe ◽  
William J. Devenport
2008 ◽  
Vol 65 (1) ◽  
pp. 21-42 ◽  
Author(s):  
Ching-Long Lin ◽  
Quanxin Xia ◽  
Ronald Calhoun

Abstract The proper orthogonal decomposition technique is applied to 74 snapshots of 3D wind and temperature fields to study turbulent coherent structures and their interplay in the urban boundary layer over Oklahoma City, Oklahoma. These snapshots of data are extracted from single-lidar data via a four-dimensional variational data assimilation technique. The total velocities and fluctuating temperature are used to construct the data matrix for the decomposition; thus the first eigenmode represents the temporal mean of these data. Roll vortices with a wavelength–height ratio of 3.2 are identified in the first, most energetic eigenmode and are attributed to the inflection-point instability. The second and third spatial eigenmodes also exhibit roll characteristics with different time and length scales, resulting in clockwise- and counterclockwise-rotating roll vortices above the airport and the central business districts. Their positive correlation with temperature fluctuation suggests that those roll structures are driven by thermal as well as wind shear. Their limited horizontal extent seems to coincide with the path of the Oklahoma River. With decreasing rank, coherent structures undergo a transition from roll to polygon patterns. A localized downdraft or updraft located above a cluster of restaurants is captured by the fourth eigenmode. In the capping inversion layer, gravity wave eigenmodes are observed and may be attributed to convection waves. The representation of instantaneous snapshots by high-ranking eigenmodes is then examined by reconstruction of reduced-order fields. It is found that the first four eigenmodes are sufficient to capture the overall characteristics of the 74 snapshots of data.


1977 ◽  
Vol 82 (3) ◽  
pp. 507-528 ◽  
Author(s):  
Hugh W. Coleman ◽  
Robert J. Moffat ◽  
William M. Kays

The behaviour of a fully rough turbulent boundary layer subjected to favourable pressure gradients both with and without blowing was investigated experimentally using a porous test surface composed of densely packed spheres of uniform size. Measurements of profiles of mean velocity and the components of the Reynolds-stress tensor are reported for both unblown and blown layers. Skin-friction coefficients were determined from measurements of the Reynolds shear stress and mean velocity.An appropriate acceleration parameterKrfor fully rough layers is defined which is dependent on a characteristic roughness dimension but independent of molecular viscosity. For a constant blowing fractionFgreater than or equal to zero, the fully rough turbulent boundary layer reaches an equilibrium state whenKris held constant. Profiles of the mean velocity and the components of the Reynolds-stress tensor are then similar in the flow direction and the skin-friction coefficient, momentum thickness, boundary-layer shape factor and the Clauser shape factor and pressure-gradient parameter all become constant.Acceleration of a fully rough layer decreases the normalized turbulent kinetic energy and makes the turbulence field much less isotropic in the inner region (forFequal to zero) compared with zero-pressure-gradient fully rough layers. The values of the Reynolds-shear-stress correlation coefficients, however, are unaffected by acceleration or blowing and are identical with values previously reported for smooth-wall and zero-pressure-gradient rough-wall flows. Increasing values of the roughness Reynolds number with acceleration indicate that the fully rough layer does not tend towards the transitionally rough or smooth-wall state when accelerated.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
A.-M. Shinneeb ◽  
R. Balachandar ◽  
J. D. Bugg

This paper investigates an isothermal free water jet discharging horizontally from a circular nozzle (9mm) into a stationary body of water. The jet exit velocity was 2.5m∕s and the exit Reynolds number was 22,500. The large-scale structures in the far field were investigated by performing a proper orthogonal decomposition (POD) analysis of the velocity field obtained using a particle image velocimetry system. The number of modes used for the POD reconstruction of the velocity fields was selected to recover 40% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the coherent structures. The results clearly reveal that a substantial number of vortical structures of both rotational directions exist in the far-field region of the jet. The number of vortices decreases in the axial direction, while their size increases. The mean circulation magnitude is preserved in the axial direction. The results also indicate that the circulation magnitude is directly proportional to the square of the vortex radius and the constant of proportionality is a function of the axial location.


Sign in / Sign up

Export Citation Format

Share Document