shape factor
Recently Published Documents


TOTAL DOCUMENTS

811
(FIVE YEARS 203)

H-INDEX

40
(FIVE YEARS 10)

2022 ◽  
Vol 327 ◽  
pp. 207-222
Author(s):  
Jiehua Li ◽  
Xun Zhang ◽  
Johannes Winklhofer ◽  
Stefan Griesebner ◽  
Bernd Oberdorfer ◽  
...  

In order to reduce CO2 emission and energy consumption, more recycled secondary materials have to be used in foundry industry, especially for Al-Si-Mg based alloys for semi-solid processing. In this paper, Al-Si-Mg based alloys with the addition of recycled secondary materials up to 30 % (10, 20, 30 %, respectively) have been produced by semi-solid processing. The solidification microstructure was investigated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, computed tomography (CT) was also used to elucidate the size, size distribution, number density, volume fraction of porosities. It was found that with the addition of the recycled secondary materials up to 30 %, there is no significant effect on the solidification microstructure in terms of the grain size and the shape factor of primary α-Al and the second α-Al. More importantly, the morphology of eutectic Si can be well modified and that of the Fe-containing phase (π-AlSiMgFe) can be tailored. Furthermore, with increasing recycled secondary materials, at least another two important issues should also be highlighted. Firstly, more TiB2 particles were observed, which can be due to the addition of Al-Ti-B grain refiners for the grain refinement of recycled secondary materials. Secondly, a significant interaction between Sr and P was also observed in the recycled secondary materials. The present investigation clearly demonstrates that Al-Si-Mg based alloys with the addition of recycled secondary materials at least up to 30% can be used for semi-solid processing, which may facilitate better sustainability.


2022 ◽  
Vol 327 ◽  
pp. 255-262
Author(s):  
Nai Yong Li ◽  
Wei Min Mao ◽  
Xiao Xin Geng ◽  
Peng Yu Yan

The semi-solid slurry of 6061 aluminum alloy was prepared by the serpentine channel pouring process. The influence of graphite serpentine channel and copper serpentine channel on the slurry was comparative analyzed. The effect of pouring temperature on the slurry microstructure was also investigated. The results indicate that both copper and graphite serpentine channel can be used to prepare semi-solid slurry with spherical primary grains. Compared with a permanent casting, the microstructure of the semi-solid slurry was significantly improved and refined. With the increase of pouring temperature, the average equivalent grain diameter of the primary phase grains in the semi-solid slurry increases gradually, but the shape factor decreases gradually. When the pouring temperature increased from 675 °C to 690 °C, a high quality semi-solid slurry can be obtained. Comparing the two kinds of serpentine channel, it is found that the copper serpentine channel can make the primary grains finer, and the average equivalent grain size was 63 μm. However, the solidified shell near the inner graphite serpentine channel surface was thinner than that of the copper serpentine channel. In conclusion, the graphite serpentine channel is more suitable for preparing semi-solid 6061 aluminum alloy slurry.


2022 ◽  
Vol 327 ◽  
pp. 223-230
Author(s):  
Juan Chen ◽  
Xiao Gang Hu ◽  
Wen Ying Qu ◽  
Min Luo ◽  
Zhong Li ◽  
...  

The characteristics of the solid phase, namely the volume fraction, particle size, and morphology, are dominant variables that can determine the viscosity of the semi-solid slurry. However, particle size and morphology were always being ignored and the solid fraction was simply determined using the temperature in the conventional power-law viscosity, resulting in a disagreement in the viscosity values in different researches. To make the power-law viscosity model more accurate for predicting the filling process of semi-solid die casting, it is essential to modify this viscosity model based on particle characteristics. Therefore, there is a fundamental demand to prepare semi-solid slurries with different α-Al phase features at first. This is achieved in this study by two kinds of heat history controlling methods: remelting and solidification, which can get slurries with spherical structure and dendric structure, respectively. The semi-solid 357.0 slurries with 0.11-0.43 solid fraction, 137-182μm particle size, and 0.81-0.90 shape factor were prepared in the remelting process, while dendritic structures (shape factor<0.5) with 0.1 and 0.3 solid fractions were obtained by solidification controlling from the full liquid state. Besides, the effect of parameters on the evolution of the α-Al phase has been discussed. These slurries with different solid features will be further used to quantify the influence of primary phase characteristics on rheological behavior and make the power-law viscosity model more accurate for simulation.


2022 ◽  
Author(s):  
A. Korotkov

Abstract. The quality of grinding of bearing races is related to their performance and durability. The aim of this work is to establish how the machining quality of bearing rings depends on the characteristics of grinding wheels, in particular, on such a parameter as the shape of abrasive grains. Several batches of experimental grinding wheels were made, containing grains of different shapes (from isometric to lamellar varieties). Quantitatively, the shape of the grains was estimated by the shape factor parameter (SF), which is equal to the ratio of the diameters of inscribed and circumscribed circles in the contours of the used grains. The shape factor was determined using a scanner or a digital microscope and a special computer program. The tests were carried out on circular, plunge, and finishing grinding, using coolant, on a SIW 4E machine in a bearing factory. The machining quality of the bearing rings was assessed by studying the microstructure, microhardness and roughness of their bearing races. The durability of grinding wheels was determined by the number of machined rings before maximum tool wear. It has been established that by a differentiated approach to the choice of grain shapes in the wheel, it is possible to significantly increase its operational capabilities: increase the microhardness of the ground surfaces, reduce the roughness of processing, and increase the durability of grinding wheels.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012005
Author(s):  
Zhijing Zhang

Abstract Structural changes of an Ag54Cu1 cluster had been computationally studied by molecular dynamics approaches. Packing transition was demonstrated by analytical tools including potential energy, atomic density profiles, and shape factor as well as visually packing images. During the process of temperature decreasing, this cluster preferentially assumes icosahedral geometry. Copper atom usually has an atomic position inside a cluster. As temperature decreases, its position will change. Potential energy shows different temperature regimes in the structural transformation. Atomic density profile gives packing pattern in different region. Shape factor presents the morphology changes of this cluster.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Tuberculosis (TB) is a worldwide health crisis and is the second primary infectious disease that causes death next to human immunodeficiency virus. In this work, an attempt has been made to detect the presence of bacilli in sputum smears. The smear images recorded under standard image acquisition protocol are subjected to hybrid Ant Colony Optimization (ACO)-morphological based segmentation procedure. This method is able to retain the shape of bacilli in TB images. The segmented images are validated with ground truth using overlap, distance and probability-based measures. Significant shape-based features such as area, perimeter, compactness, shape factor and tortuosity are extracted from the segmented images. It is observed that this method preserves more edges, detects the presence of bacilli and facilitates direct segmentation with reduced number of redundant searches to generate edges. Thus this hybrid segmentation technique aid in the diagnostic relevance of TB images in identifying the objects present in them.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Tuberculosis (TB) is a worldwide health crisis and is the second primary infectious disease that causes death next to human immunodeficiency virus. In this work, an attempt has been made to detect the presence of bacilli in sputum smears. The smear images recorded under standard image acquisition protocol are subjected to hybrid Ant Colony Optimization (ACO)-morphological based segmentation procedure. This method is able to retain the shape of bacilli in TB images. The segmented images are validated with ground truth using overlap, distance and probability-based measures. Significant shape-based features such as area, perimeter, compactness, shape factor and tortuosity are extracted from the segmented images. It is observed that this method preserves more edges, detects the presence of bacilli and facilitates direct segmentation with reduced number of redundant searches to generate edges. Thus this hybrid segmentation technique aid in the diagnostic relevance of TB images in identifying the objects present in them.


2021 ◽  
Vol 12 (1) ◽  
pp. 343
Author(s):  
Yanru Wang ◽  
Jiaxin Shen ◽  
Zhaoqin Yin ◽  
Fubing Bao

Submicron particles transported by a Laval-type micronozzle are widely used in micro- and nano-electromechanical systems for the aerodynamic scheme of particle acceleration and focusing. In this paper, the Euler–Lagrangian method is utilized to numerically study non-spherical submicron particle diffusion in a converging–diverging micronozzle flow field. The influence of particle density and shape factor on the focusing process is discussed. The numerical simulation shows how submicron particle transporting with varying shape factors and particle density results in different particle velocities, trajectories and focusing in a micronozzle flow field. The particle with a larger shape factor or larger density exhibits a stronger aerodynamic focusing effect in a supersonic flow field through the nozzle. In the intersection process, as the particle size increases, the position of the particle trajectory intersection moves towards the throat at first and then it moves towards the nozzle outlet. Moreover, the influence of the thermophoretic force of the submicron particle on the aerodynamic focusing can be ignored. The results will be beneficial in technological applications, such as micro-thrusters, microfabrication and micro cold spray.


Author(s):  
А. S. Bagdasaryan ◽  
Yu. V. Gulyaev ◽  
S. A. Dobershtein ◽  
T. V. Sinitsina

This paper presents an efficient method for creating the wideband SAW filters with high rectangularity, flat amplitude response and low insertion loss in passband – use of fan-shaped IDTs with inclined electrodes. The authors consider the approaches for realization of the fan-shaped filters. The quantitative and qualitative characteristics of the fan-shaped SAW filters with a relative bandwidth ∆f/f0 = 4–75 %, shape factor 1,1–1,96 and insertion loss of 5–18 dB are given for each approach.


Sign in / Sign up

Export Citation Format

Share Document