The Earth-Moon L2Quasi-Halo Orbit Family: Characteristics and Manifold Applications

2022 ◽  
Author(s):  
David Lujan ◽  
Daniel J. Scheeres
Author(s):  
Zhou Rui

The paper introduces a new method for solving the problem of calculating the perturbed trajectory of a two-impulse flight between a near-lunar orbit and a halo orbit in the vicinity of the L2 point of the Sun — Earth system. Unlike traditional numerical methods, this method has better convergence. Accelerations from the gravitational forces of the Earth, the Moon and the Sun as point masses and acceleration from the second zonal harmonic of the geopotential are taken into account at all sections of the trajectory. The calculation of the flight path is reduced to solving a two-point boundary value problem for a system of ordinary differential equations. The developed method is based on the parameter continuation method and does not require the choice of an initial approximation for solving the boundary value problem. The last section of the paper provides examples and results of the analysis based on this method.


2018 ◽  
Author(s):  
Olga Starinova ◽  
Vyacheslav Kupczov ◽  
Changsheng Gao ◽  
Yudon Hu ◽  
Maksim Fain ◽  
...  

1993 ◽  
Vol 56 (4) ◽  
pp. 541-562 ◽  
Author(s):  
G. G�mez ◽  
A. Jorba ◽  
J. Masdemont ◽  
C. Sim�
Keyword(s):  

1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document