Pressure Drop for Oil-Gas Two-Phase Flow Through Straight Horizontal Pipe

2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  
Author(s):  
L. Wenhong ◽  
G. Liejin ◽  
Z. Ximin ◽  
L. Kai ◽  
Y. Long ◽  
...  

2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

2016 ◽  
Vol 94 ◽  
pp. 422-432 ◽  
Author(s):  
N. Chikhi ◽  
R. Clavier ◽  
J.-P. Laurent ◽  
F. Fichot ◽  
M. Quintard

2010 ◽  
Author(s):  
W. H. Liu ◽  
L. J. Guo ◽  
Liejin Guo ◽  
D. D. Joseph ◽  
Y. Matsumoto ◽  
...  

2019 ◽  
Vol 112 ◽  
pp. 13-26
Author(s):  
Sonja Weise ◽  
Sebastian Meinicke ◽  
Thomas Wetzel ◽  
Benjamin Dietrich

2011 ◽  
Vol 25 (4) ◽  
pp. 1624-1632 ◽  
Author(s):  
Jing Gong ◽  
Yu Zhang ◽  
Lulu Liao ◽  
Jimiao Duan ◽  
Pengyu Wang ◽  
...  

Author(s):  
Milka Hebi Nava Rivera ◽  
Daisuke Ito ◽  
Yasushi Saito ◽  
Mitsuhiro Aoyagi ◽  
Kenji Kamiyama ◽  
...  

Two-phase flow through porous media should be well understood to develop a severe accident analysis code not only for light water reactor but also sodium cooled fast reactor (SFR). When a core disruptive accident occurs in SFR, the fuel inside the core may become melted and interacts with the coolant. As a result, gas-liquid two-phase flow will be formed in the debris bed, which may have porous nature depending on the cooling process. Thus, as first step, present work focuses on the characteristics of pressure drop in single- and two-phase flows in different porous media conditions (porous size, liquid and gas flow velocity). In addition, in order to construct an experimental database, the measured pressure drop under different conditions was compared with existing correlations.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document