wax deposition
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 160)

H-INDEX

31
(FIVE YEARS 6)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122940
Author(s):  
Charlie van der Geest ◽  
Letícia Bizarre ◽  
Aline Melchuna ◽  
Ivanei F. Pinheiro ◽  
Vanessa C.B. Guersoni

Author(s):  
Ibrahim Elganidi ◽  
Basem Elarbe ◽  
Norida Ridzuan ◽  
Norhayati Abdullah

AbstractWax deposition is considered one of the most serious operational issues in the crude oil pipelines. This issue occurs when the crude oil temperature decreases below the temperature of wax appearance and paraffin wax starts to precipitate on the pipelines’ inner walls. As a result, the crude oil flow is impeded because of the precipitated wax. The use of polymeric pour point depressants has obtained significant interest among researchers as an approach of wax control for enhancing the flowability of the waxy crude oil. PPD of poly(behenyl acrylate -co-stearyl methacrylate-co- maleic anhydride) (BA-co-SMA-co-MA) was facilely synthesised by the use of free radical polymerisation. The variation of the PPD structure was studied by choosing several essential parameters like monomers ratio, reaction time, initiator concentration, and reaction temperature. Furthermore, viscosity measurement, pour point, and cold finger apparatus have been employed to evaluate the efficiency of the synthesised Polymer. The chemical structure of poly(BA-co-SMA-co-MA) has been identified through the use of Fourier transform infrared as well as nuclear magnetic resonance. The experimental findings demonstrated that the ideal conditions for obtaining the highest yield were 1.5% initiator concentration, reaction time and temperature of 8 h and 100 °C, respectively, and monomer ratio of 1:1:1 (BA:SMA:MA). Under these ideal conditions, the prepared terpolymer reduced the crude oil viscosity at 30 °C and 1500 ppm from 7.2 to 3.2 mPa.s. The cold finger experiment demonstrated that after poly(BA-co-SMA-co-MA) was used as a wax inhibitor, the maximum efficiency of paraffin inhibition of 45.6% was achieved at 200 rpm and 5 °C. Besides, the best performance in depressing the pour point by ΔPP 14 ℃ observed at the concentration of 1500 ppm, which can change the growth characteristics of wax crystals and delay the aggregation of asphaltene and resin, thus effectively improving the flowability of crude oil.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Lixin Wei ◽  
Da Li ◽  
Chao Liu ◽  
Zhaojun He ◽  
Yang Ge

In order to solve the problem of wax deposition in waxy crude oil from the Daqing oilfield, cold fingers were used in the experimentation. Compared with other methods, the cold finger method is simple, easy to operate, and takes little space. Measurements of wax deposition with temperature, temperature differences between the crude oil and the wall, deposition time, and cold finger rotation rate were made. The results showed that the deposition rate is up to 0.35 g/h at 8–24 h. The maximum deposition rate at 90 rotations/min was 0.26 g/h, which is 3% higher than the minimum deposition rate.


2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Syed Imran Ali ◽  
Shaine Mohammadali Lalji ◽  
Javed Haneef ◽  
Muhammad Arqam Khan ◽  
Mohsin Yousufi ◽  
...  

Author(s):  
Basem Elarbe ◽  
Ibrahim Elganidi ◽  
Norida Ridzuan ◽  
Kamal Yusoh ◽  
Norhayati Abdullah ◽  
...  

AbstractWax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the petroleum industry due to low-temperature conditions. The most significant popular approach to solve this issue is by inserting a wax inhibitor into the channel. This research aims to reduce the amount of wax formation of Malaysian crude oil by estimating the effective parameters using Design-Expert by full factorial design (FFD) method. Five parameters have been investigated, which are rotation speed (A), cold finger temperature (B), duration of experimental (C), the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA) (D), and concentration of nano-silica SiO2 (E). The optimum conditions for reducing the amount of wax deposit have been identified using FFD at 300 rpm, 10 ℃, 1 h, 1200 ppm and 400 ppm, respectively. The amount of wax deposit estimated is 0.12 g. The regression model’s variance results revealed that the R2 value of 0.9876, showing 98.76% of the data variation, can be described by the model. The lack of fit is not important in comparison to the pure error, which is good. The lack of fit F value of 12.85 means that there is only a 7.41% probability that this huge can occur because of noise. The influence of cold finger temperature was reported as the main contributing factor in the formation of wax deposits compared to other factors. In addition, the interaction between factor B and factor C revealed the highest interaction effect on the wax deposition. In conclusion, the best interaction variables for wax inhibition can be determined using FFD. It is a valued tool to measure and detect the unique relations of two or more variables. As a result, the findings of this study can be used to develop a reliable model for predicting optimum conditions for reducing wax deposits and the associated costs and processing time.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2769
Author(s):  
Abhilasha Abhilasha ◽  
Swarup Roy Choudhury

Drought is the most prevalent unfavorable condition that impairs plant growth and development by altering morphological, physiological, and biochemical functions, thereby impeding plant biomass production. To survive the adverse effects, water limiting condition triggers a sophisticated adjustment mechanism orchestrated mainly by hormones that directly protect plants via the stimulation of several signaling cascades. Predominantly, water deficit signals cause the increase in the level of endogenous ABA, which elicits signaling pathways involving transcription factors that enhance resistance mechanisms to combat drought-stimulated damage in plants. These responses mainly include stomatal closure, seed dormancy, cuticular wax deposition, leaf senescence, and alteration of the shoot and root growth. Unraveling how plants adjust to drought could provide valuable information, and a comprehensive understanding of the resistance mechanisms will help researchers design ways to improve crop performance under water limiting conditions. This review deals with the past and recent updates of ABA-mediated molecular mechanisms that plants can implement to cope with the challenges of drought stress.


2021 ◽  
Author(s):  
Jamilyam Ismailova ◽  
Aibek Abdukarimov ◽  
Bagdat Mombekov ◽  
Dinara Delikesheva ◽  
Luis E. Zerpa ◽  
...  

Abstract Wax deposition on inner surfaces of pipelines is a costly problem for the petroleum industry. This flow assurance problem is of particular interest during the production and transportation of waxy oils in cold environments. An understanding of known mechanisms and available thermodynamic models will be useful for the management and planning of mitigation strategies for wax deposition. This paper presents a critical review of wax prediction models used for estimation of wax deposition based on chemical hydrocarbon compositions and thermobaric condition. The comparative analysis is applied to highlight the effective mechanisms guiding the wax deposition, and how this knowledge can be used to model and provide solutions to reducing wax deposition issues. One group of thermodynamic models assume that the precipitated wax is a solid solution. These models are divided into two categories: ideal (Erickson and Pedersen models) and non-ideal solutions (Won and Coutinho models). In the other group of models, the wax phase consists of many solid phases (Lira-Galeana model). The authors summarized the limitations of the models, evaluated, and identified ways to represent the overview of existing thermodynamical models for predicting wax precipitation. Within the strong demand from industry, the results of this manuscript can aid to aspire engineers and researcher.


Author(s):  
Basem Elarbe ◽  
Ibrahim Elganidi ◽  
Norida Ridzuan ◽  
Kamal Yusoh ◽  
Norhayati Abdullah ◽  
...  

AbstractPour point depressant (PPD) has the competitive advantage of lowering the temperature of the wax appearance (WAT) and crude oil viscosity. In this paper, a novel PPD of poly stearyl acrylate-co-behenyl acrylate (SA-co-BA) in various mass ratios (1:1, 2:1, 3:1, 1:2 and 1:3) was effectively synthesized by solution radical polymerization method, and characterized by fourier transform infrared FTIR, proton nuclear magnetic resonance NMR, x-ray diffraction XRD and scanning electron microscopy SEM. The SA-co-BA PPD was evaluated on Malaysian crude oil via the pour point, the rheological and cold finger analysis to prevent the wax deposition at low temperature and improve flowability. The findings showed that the mass ratio (1:1) at 1000 ppm has a positive effect on the pour point depression from 11 to 2 °C. It was investigated from the rheological measurement that the viscosity of crude oil increases as the temperature decreases. Whereas, the viscosity decreases as the shear rate increases and as shear rate increases, shear stress increases. The flowability performance of the crude by the mass ratio of 1:1 at 1000 of the SA-co-BA concentrations have improved by 89.76%. The highest paraffin inhibition efficiency PIE of wax deposited was obtained at 1:1 of the mass ratio by 44.14%, indicating the smallest amount of wax is formed. This finding is interestingly attributed to the acrylate groups that have a long alkyl chain. Thus, SA-co-BA copolymer was demonstrated to be an appreciable pour point depressant that can prevent the wax deposition at low temperature and increasing the flowability of Malaysian crude oil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guiping Cheng ◽  
Ling Wang ◽  
Hairong Wu ◽  
Xinfan Yu ◽  
Nan Zhang ◽  
...  

The vase life of cut flowers is largely affected by post-harvest water loss. Cuticular wax is the primary barrier to uncontrolled water loss for aerial plant organs. Studies on leaf cuticular transpiration have been widely conducted; however, little is known about cuticular transpiration in flowers. Here, the cuticular transpiration rate and wax composition of three lily cultivars were determined. The minimum water conductance of tepal cuticles was higher at the green bud than open flower stage. Lily cuticular transpiration exhibited cultivar- and organ-specific differences, where transpiration from the tepals was higher than leaves and was higher in the ‘Huang Tianba’ than ‘Tiber’ cultivar. The overall wax coverage of the tepals was higher compared to that of the leaves. Very-long-chain aliphatics were the main wax constituents and were dominated by n-alkanes with carbon (C) chain lengths of C27 and C29, and C29 and C31 in the tepal and leaf waxes, respectively. Primary alcohols and fatty acids as well as small amounts of alkyl esters, ketones, and branched or unsaturated n-alkanes were also detected in both tepal and leaf waxes, depending on the cultivar and organ. In addition, the chain-length distributions were similar between compound classes within cultivars, whereas the predominant C-chain lengths were substantially different between organs. This suggests that the less effective transpiration barrier provided by the tepal waxes may result from the shorter C-chain aliphatics in the tepal cuticle, compared to those in the leaf cuticle. These findings provide further insights to support the exploration of potential techniques for extending the shelf life of cut flowers based on cuticular transpiration barrier properties.


Sign in / Sign up

Export Citation Format

Share Document