scholarly journals APPLICATION OF QUASI-TEM SURFACE IMPEDANCE APPROACH TO CALCULATE INDUCTANCE, RESISTANCE AND CONDUCTOR LOSSES OF MULTICONDUCTOR MICROSTRIP LINE SYSTEM

2016 ◽  
Vol 50 ◽  
pp. 85-93
Author(s):  
El Mokhtar Hamham
2021 ◽  
Vol 36 (5) ◽  
pp. 542-547
Author(s):  
Sheng-lan Wang ◽  
Jing-Song Hong ◽  
Yan Deng ◽  
Zhi-jian Chen

In this paper, a frequency reconfigurable antenna was presented. This antenna is made up of a square loop and a microstrip line with a gap, in which the few layer graphene (FLG) sheet is located to achieve frequency reconfigurable. FLG is likes a lumped resistor with resistance. And the surface impedance can be adjusted by applying a direct current bias voltage, which obtains two work modes that imitate switch. Additionally, the experimental evidence show the proposed frequency reconfigurable antenna can provide a tunable bandwidth.


Author(s):  
W.R. Jones ◽  
S. Coombs ◽  
J. Janssen

The lateral line system of the mottled sculpin, like that of most bony fish, has both canal (CNM) and superficial (SNM) sensory end organs, neuromasts, which are distributed on the head and trunk in discrete, readily identifiable groupings (Fig. 1). CNM and SNM differ grossly in location and in overall size and shape. The former are located in subdermal canals and are larger and asymmetric in shape, The latter are located directly on the surface of the skin and are much smaller and more symmetrical It has been suggested that the two may differ at a more fundamental level in such functionally related parameters as extent of myelination of innervating fibers and the absence of efferent innervation in SNM. The present study addresses the validity of these last two features as distinguishing criteria by examining the structure of those SNM populations indicated in Fig. 1 at both the light and electron microscopic levels.All of the populations of SNM examined conform in general to previously published descriptions, consisting of a neuroepithelium composed of sensory hair cells, support cells and mantle cells, Several significant differences from these accounts have, however, emerged. Firstly, the structural composition of the innervating fibers is heterogeneous with respect to the extent of myelination. All SNM groups, with the possible exception of the TRrs and CFLs, possess both myelinated and unmyelinated fibers within the neuroepithelium proper (Fig. 2), just as do CNM. The extent of myelina- tion is quite variable, with some fibers sheath terminating just before crossing the neuroepithelial basal lamina, some just after and a few retaining their myelination all the way to the base of the hair cells in the upper third of the neuroepithelium. Secondly, all SNMs possess fibers that may, on the basis of ultrastructural criteria, be identified as efferent. Such fibers contained numerous cytoplasmic vesicles, both clear and with dense cores. In regions where such fibers closely apposed hair cells, subsynaptic cisternae were observed in the hair cell (Fig. 3).


2008 ◽  
Vol 128 (6) ◽  
pp. 878-884
Author(s):  
Nobuhiko Okuzaki ◽  
Yukihiro Shimakata ◽  
Mitsuyuki Yamauchi ◽  
Kouji Wada ◽  
Takashi Iwasaki
Keyword(s):  

2020 ◽  
Vol 79 (14) ◽  
pp. 1205-1215
Author(s):  
Yu. M. Penkin ◽  
V. A. Katrich ◽  
M. V. Nesterenko ◽  
S. L. Berdnik

Author(s):  
Benedict Scheiner ◽  
Christopher Beck ◽  
Fabian Lurz ◽  
Martin Frank ◽  
Fabian Michler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document