scholarly journals Investigation into Hub Effect of Marine Propeller by Surface Vortex Lattice Method

1995 ◽  
Vol 1995 (177) ◽  
pp. 59-66 ◽  
Author(s):  
You-Hua Liu ◽  
Mitsuhisa Ikehata
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Ye Tian ◽  
Abhinav Sharma

A boundary element method (BEM) and a vortex-lattice method (VLM) are extended in order to predict the unsteady performance of propellers subject to rigid body motions. The methods are applied in the case of prescribed surge and heave motions, and the results are compared with those from other methods.


2003 ◽  
Vol 47 (02) ◽  
pp. 131-144
Author(s):  
Jin-Keun Choi ◽  
Spyros A. Kinnas

A fully three-dimensional Euler solver, based on a finite volume approach, is developed and applied to the prediction of the unsteady effective wake for propellers subject to non-axisymmetric inflows. The Euler solver is coupled with an existing lifting-surface vortex-lattice method for the computation of unsteady propeller flows. The coupled method is validated against the uniform inflow case, in which ideally the uniform flow should be recovered as the effective wake. The predicted total velocity field correlates very well with that measured in the water tunnel experiment. Lastly, the unsteady effective wake predicted by the present method is compared with the steady effective wake predicted by the authors' previous steady method.


2001 ◽  
Vol 45 (01) ◽  
pp. 13-33
Author(s):  
Jin-Keun Choi ◽  
Spyros A. Kinnas

A fully three-dimensional Euler solver, based on a finite volume approach, is developed and applied to the prediction of the effective wake for propellers subject to non-axisymmetric inflows. The method is coupled with an existing lifting-surface vortex-lattice method for the analysis of unsteady cavitating propeller flows. The results are validated against analytical solutions from actuator disk theory. The effect of the grid parameters on the results (circumferential average and amplitudes of harmonics of the predicted effective wake) is found to be very weak. The predicted total velocity field correlates very well with that measured in propeller experiments.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1230-1233
Author(s):  
Paulo A. O. Soviero ◽  
Hugo B. Resende

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


Sign in / Sign up

Export Citation Format

Share Document