finite volume approach
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 34)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Sribhashyam K. Kireeti ◽  
Ravikiran Sastry Gadepalli ◽  
Santhosh K. Gugulothu

Abstract In this study, the flow dynamics with finite volume approach on commercial software Ansys-Fluent 20.0 to solve the compressible two-dimensional fluid flow with Reynolds Average Navier Stokes equation (RANS) equation by considering the density-based solver with Shaer stress transport model (SST) k- ω turbulent model. The species transport model with volumetric reaction and finite rate/eddy dissipation turbulence chemistry interaction is adopted to study the combustion phenomena. Additionally, the effect of spacing between the struts on the flow characters and performance of the combustor is studied by increasing the spacing of struts from 1 mm to 4 mm for each increment of 1 mm. It is found that the multi strut improves the mixing and combustion efficiency compared with that of the single strut owing to the formation of a significant separation layer, resulting in multiple shocks, vortices, and a larger recirculation zone. However, when the spacing of struts is increased further, the performance of the combustor is found to be deteriorating owing to the formation of larger separation layers. The recirculation zone is significant when the strut spacing is minimal and shrinks and restricts itself within the cavity when spacing is increased. So, for better performance of combustor, multi strut with minimum spacing is preferable.


2021 ◽  
Vol 933 ◽  
Author(s):  
Francesco Picella ◽  
Sébastien Michelin

To spontaneously break their intrinsic symmetry and self-propel at the micron scale, isotropic active colloidal particles and droplets exploit the nonlinear convective transport of chemical solutes emitted/consumed at their surface by the surface-driven fluid flows generated by these solutes. Significant progress was recently made to understand the onset of self-propulsion and nonlinear dynamics. Yet, most models ignore a fundamental experimental feature, namely the spatial confinement of the colloid, and its effect on propulsion. In this work the self-propulsion of an isotropic colloid inside a capillary tube is investigated numerically. A flexible computational framework is proposed based on a finite-volume approach on adaptative octree grids and embedded boundary methods. This method is able to account for complex geometric confinement, the nonlinear coupling of chemical transport and flow fields, and the precise resolution of the surface boundary conditions, that drive the system's dynamics. Somewhat counterintuitively, spatial confinement promotes the colloid's spontaneous motion by reducing the minimum advection-to-diffusion ratio or Péclet number, ${Pe}$ , required to self-propel; furthermore, self-propulsion velocities are significantly modified as the colloid-to-capillary size ratio $\kappa$ is increased, reaching a maximum at fixed ${Pe}$ for an optimal confinement $0<\kappa <1$ . These properties stem from a fundamental change in the dominant chemical transport mechanism with respect to the unbounded problem: with diffusion now restricted in most directions by the confining walls, the excess solute is predominantly convected away downstream from the colloid, enhancing front-back concentration contrasts. These results are confirmed quantitatively using conservation arguments and lubrication analysis of the tightly confined limit, $\kappa \rightarrow 1$ .


Author(s):  
Djedid Taloub ◽  
Adelkarim Bouras ◽  
Zied Driss

During this first paper, numerical research from the natural convection of steady-state laminar heat transfer into a horizontal ring within a heated internal elliptical surface and a cold external square surface is presented. A Cu - water nanofluid, traverses this annular space. For different thermal Rayleigh numbers varying from 103 to 2.5x105 and different volume fractions from the nanoparticles. The arrangement from equations directing the problem was resolved numerically with the Fluent computational language founded on the finite volume approach. Based approaching the Boussinesq approach. The interior and exterior surfaces from the two cylinders are maintained at a fixed temperature. We investigated the impacts of various thermal Rayleigh numbers, the volume fraction from the nanoparticles, and the effect of the eccentricity of the internal cylinder on the natural convection. The results are shown within the figure of isocurrents, isotherms, and mean and local Nusselt numbers. The objective of this investigation is to examine the impact of different parameters on the heat transfer flow.


CFD Letters ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 25-35
Author(s):  
Ghassan Nasif ◽  
Yasser El-Okda

A computational fluid dynamics (CFD) investigation to determine the conjugate heat transfer (CHT) effect on the stagnation and local thermal characteristics due to an impinging process has been carried out in this study using STAR-CCM+ - Siemens PLM commercial code. The transient Navier-Stokes’s equations are numerically solved using a finite volume approach with k-ω SST eddy viscosity as the turbulence model. A fully developed circular air jet with different Reynolds numbers, impinging vertically onto a heated flat disc with different metals, thicknesses, and boundary heat fluxes are employed in the current study to examine the thermal characteristics and provide an enhanced picture for the convection mechanism that used in jet cooling technology. It is found that the thermal characteristics are influenced by the thermal conductivity and thickness of the target upon using air as a cooling jet. The CHT process enhances the local convective heat transfer at the fluid-solid interface due to the variation in transverse and axial conductive heat transfer inside the metal up to a certain redial extent from the stagnation region compared to the process with no CHT. The extent of the radial enhancement depends on the thermal conductivity of the metal. For a given thermal conductivity, the CHT process acts to increase the temperature and convective heat flux of the stagnation region as the metal thickness increases.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5011
Author(s):  
Robin De Schryver ◽  
Khadija El Cheikh ◽  
Karel Lesage ◽  
Mert Yücel Yardimci ◽  
Geert De Schutter

Rheological quantification is important in many industries, the concrete industry in particular, e.g., pumping, form filling, etc. Instead of performing expensive and time-consuming experiments, numerical simulations are a powerful means in view of rheological assessment. However, due to the unclear numerical reliability and the uncertainty of rheological input data, it is important for the construction industry to assess the numerical outcome. To reduce the numerical domain of cementitious suspensions, we assessed the numerical finite volume simulations of Bingham paste pumping flows in OpenFOAM. We analysed the numerical reliability, first, irrespective of its rheological input by comparison with the literature and theory, and second, dependent on a certain rheological quantification by comparison with pumping experiments. Irrespective of the rheological input, the numerical results were significantly accurate. Dependent on the rheological input, a numerical mismatch, however, existed. Errors below 1% can be expected for proposed numerical rules of thumb: a bi-viscous regularisation, with pressure numbers higher than 5/4. To improve bias due to uncertain rheology, a rheological configuration close to the engineer’s aimed application should be used. However, important phenomena should not be overlooked. Further assessment for lubrication flows, in, e.g., concrete pumping, is still necessary to address concerns of reliability and stability.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1624
Author(s):  
Taymaz Esmaeili ◽  
Tetsuya Sumi ◽  
Sameh A. Kantoush ◽  
Yoji Kubota ◽  
Stefan Haun ◽  
...  

The Unazuki Reservoir is located on the Kurobe River, which is influenced by a catchment with one of the highest sediment yields in Japan. Due to a sufficiently available discharge during flood events, annual sediment flushing with full water-level drawdown (i.e., free-flow sediment flushing) is conducted to preserve the effective storage capacity of the reservoir. Nevertheless, the upstream half of the reservoir (i.e., study segment) suffers from the excessive deposition of coarser sediments. Remobilization of these coarser materials and their transportation further downstream of the reservoir is a priority of reservoir owners for sustainable reservoir functions, such as flood-risk management and hydroelectric energy generation. In this paper, an already conducted sediment-flushing operation in the Unazuki Reservoir is simulated, and its effects on sediment scouring from the study segment of the reservoir together with changes in bed morphodynamics are presented. A fully 3D numerical model using the finite volume approach in combination with a wetting/drying algorithm was utilized to reproduce the hydrodynamics and bed changes using the available onsite data. Afterwards, the effects of discharge adjustment on the morphological bed changes and flushing efficiency were analysed in the study segment using an additional single-discharge pulse supplied from upstream reservoirs. Simulation results showed that an approximately 75% increase in the average discharge during the free-flow stage changed the dominant morphological process from deposition into an erosive mode in the study segment. If the increase in discharge reaches up to 100%, the flushed volume of sediments from the target segment can increase 2.9 times compared with the initiation of the erosive mode.


Sign in / Sign up

Export Citation Format

Share Document