scholarly journals A Game for Linear-time–Branching-time Spectroscopy

Author(s):  
Benjamin Bisping ◽  
Uwe Nestmann
Keyword(s):  
Author(s):  
Benjamin Bisping ◽  
Uwe Nestmann

AbstractWe introduce a generalization of the bisimulation game that can be employed to find all relevant distinguishing Hennessy–Milner logic formulas for two compared finite-state processes. By measuring the use of expressive powers, we adapt the formula generation to just yield formulas belonging to the coarsest distinguishing behavioral preorders/equivalences from the linear-time–branching-time spectrum. The induced algorithm can determine the best fit of (in)equivalences for a pair of processes.


2007 ◽  
Vol 14 (3) ◽  
Author(s):  
Luca Aceto ◽  
Willem Jan Fokkink ◽  
Anna Ingólfsdóttir

This paper contributes to the study of the equational theory of the semantics in van Glabbeek's linear time - branching time spectrum over the language BCCSP, a basic process algebra for the description of finite synchronization trees. It offers an algorithm for producing a complete (respectively, ground-complete) equational axiomatization of a behavioral congruence lying between ready simulation equivalence and partial traces equivalence from a complete (respectively, ground-complete) inequational axiomatization of its underlying precongruence--that is, of the precongruence whose kernel is the equivalence. The algorithm preserves finiteness of the axiomatization when the set of actions is finite. It follows that each equivalence in the spectrum whose discriminating power lies in between that of ready simulation and partial traces equivalence is finitely axiomatizable over the language BCCSP if so is its defining preorder.


2017 ◽  
Vol 29 (1) ◽  
pp. 3-37 ◽  
Author(s):  
GIORGIO BACCI ◽  
GIOVANNI BACCI ◽  
KIM G. LARSEN ◽  
RADU MARDARE

We study two well-known linear-time metrics on Markov chains (MCs), namely, the strong and strutter trace distances. Our interest in these metrics is motivated by their relation to the probabilistic linear temporal logic (LTL)-model checking problem: we prove that they correspond to the maximal differences in the probability of satisfying the same LTL and LTL−X(LTL without next operator) formulas, respectively.The threshold problem for these distances (whether their value exceeds a given threshold) is NP-hard and not known to be decidable. Nevertheless, we provide an approximation schema where each lower and upper approximant is computable in polynomial time in the size of the MC.The upper approximants are bisimilarity-like pseudometrics (hence, branching-time distances) that converge point-wise to the linear-time metrics. This convergence is interesting in itself, because it reveals a non-trivial relation between branching and linear-time metric-based semantics that does not hold in equivalence-based semantics.


Sign in / Sign up

Export Citation Format

Share Document