scholarly journals Schrodinger-ANI: An Eight-Element Neural Network Interaction Potential with Greatly Expanded Coverage of Druglike Chemical Space

Author(s):  
James Stevenson ◽  
Leif D. Jacobson ◽  
Yutong Zhao ◽  
Chuanjie Wu ◽  
Jon Maple ◽  
...  

We have developed a neural network potential energy function for use in drug discovery, with chemical element support extended from 41% to 94% of druglike molecules based on ChEMBL. We expand on the work of Smith et al., with their highly accurate network for the elements H, C, N, O, creating a network for H, C, N, O, S, F, Cl, P. We focus particularly on the calculation of relative conformer energies, for which we show that our new potential energy function has an RMSE of 0.70 kcal/mol for prospective druglike molecule conformers, substantially better than the previous state of the art. The speed and accuracy of this model could greatly accelerate the parameterization of protein-ligand binding free energy calculations for novel druglike molecules.

2019 ◽  
Author(s):  
James Stevenson ◽  
Leif D. Jacobson ◽  
Yutong Zhao ◽  
Chuanjie Wu ◽  
Jon Maple ◽  
...  

We have developed a neural network potential energy function for use in drug discovery, with chemical element support extended from 41% to 94% of druglike molecules based on ChEMBL. We expand on the work of Smith et al., with their highly accurate network for the elements H, C, N, O, creating a network for H, C, N, O, S, F, Cl, P. We focus particularly on the calculation of relative conformer energies, for which we show that our new potential energy function has an RMSE of 0.70 kcal/mol for prospective druglike molecule conformers, substantially better than the previous state of the art. The speed and accuracy of this model could greatly accelerate the parameterization of protein-ligand binding free energy calculations for novel druglike molecules.


1982 ◽  
Vol 37 (9) ◽  
pp. 971-981 ◽  
Author(s):  
G. Van Hooydonk

Abstract The Kratzer-Fues-Varshni-V-potential, applied to ionic dissociation energies, is shown to yield rather accurate potential energy curves in the bonding region for H2, HF, LiH, Li2 and LiF. Vibrational levels, calculated by this ionic approximation to the ground state of widely differing molecules, nearly coincide with RKR-data. At the repulsive side of the curve and up to 2re, the agreement with RKR-curves is even better than for Morse's curve, also for the "covalent" molecules H2 and Li2. Calculated spectroscopical constants αe and ωeχe are far better than those calculated with Morse's function. Even the existence of a maximum in the potential curve at larger r-values seems not in confict with an ionic approximation. From the universal character of the function used, it is concluded that a reasonable approximation for the ground state of all molecules considered is one in terms of ionic structures, even for H2 and especially for Li2. According to the present results, the term “covalent bonding” seems to be definitely superfluous, as the usually made distinction between ionic and covalent bonding is more appearant than real.


Sign in / Sign up

Export Citation Format

Share Document