green fluorescent protein
Recently Published Documents


TOTAL DOCUMENTS

3846
(FIVE YEARS 246)

H-INDEX

160
(FIVE YEARS 7)

Author(s):  
Kenya Sanada ◽  
Hiromichi Ueno ◽  
Tetsu Miyamoto ◽  
Kazuhiko Baba ◽  
Kentaro Tanaka ◽  
...  

Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by the hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered in order to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal (i.p.) administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after i.p. administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after i.p. administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.


2021 ◽  
Author(s):  
Andrea Galli ◽  
Ulrik Fahnøe ◽  
Jens Bukh

Abstract Genetic recombination is an important evolutionary mechanism for RNA viruses and can facilitate escape from immune and drug pressure. Recombinant hepatitis C virus (HCV) variants have rarely been detected in patients, suggesting that HCV has intrinsic low recombination rate. Recombination of HCV has been demonstrated in vitro between non-functional genomes, but its frequency and relevance for viral evolution and life cycle has not been clarified. We developed a cell-based assay to detect and quantify recombination between fully viable HCV genomes, using the reconstitution of green fluorescent protein (GFP) as a surrogate marker for recombination. Here, two GFP-expressing HCV genomes carrying different inactivating GFP mutations can produce a virus carrying a functional GFP by recombining within the GFP region. Generated constructs allowed quantification of recombination rates between markers spaced 603 and 553 nucleotides apart by flow cytometry and next-generation sequencing (NGS). Viral constructs showed comparable spread kinetics and reached similar infectivity titers in Huh7.5 cells, allowing their use in co-transfections and co-infections. Single cycle co-transfection experiments, performed in CD81-deficient S29 cells, showed GFP expression in double-infected cells, demonstrating genome mixing and occurrence of recombination. Quantification of recombinant genomes by NGS revealed an average rate of 6.1%, corresponding to 49% of maximum detectable recombination (MDR). Experiments examining recombination during the full replication cycle of HCV, performed in Huh7.5 cells, demonstrated average recombination rates of 5.0 % (40.0% MDR) and 3.6% (28.8% MDR) for markers spaced by 603 and 553 nucleotides, respectively, supporting a linear relationship between marker distance and recombination rates. First passage infections using recombinant virus supernatant resulted in comparable recombination rates of 5.9% (47.2% MDR) and 3.5% (28.0% MDR), respectively, for markers spaced by 603 and 553 nucleotides. We developed a functional cell-based assay that, to our knowledge, allows for the first-time detailed quantification of recombination rates using fully viable HCV constructs. Our data indicate that HCV recombines at high frequency between highly similar genomes, and that the frequency of recombination increases with the distance between marker sites. These results have implication for our understanding of HCV evolution and emphasize the importance of recombination in the reassortment of mutations in the HCV genome.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ying Li ◽  
Min Sun ◽  
Xin Wang ◽  
Yue-Jing Zhang ◽  
Xiao-Wei Da ◽  
...  

Abstract Background In the last decades, replicating expression vectors based on plant geminivirus have been widely used for enhancing the efficiency of plant transient expression. By using the replicating expression vector derived from bean yellow dwarf virus and green fluorescent protein as a reporter, we investigated the effects of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine, as three common plant growth regulators, on the plant biomass and efficiency of transient expression during the process of transient expression in Nicotiana benthamiana L. leaves. Results With the increase of the concentration of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine (from 0.1 to 1.6 mg/L), the fresh weight, dry weight, and leaf area of the seedlings increased first and then returned to the levels similar to the controls (without chemical treatment). The treatment with α-naphthalene acetic acid at 0.2 and 0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.4 mg/L α-naphthalene acetic acid and was increased about by 19%, compared to the controls. Gibberellins3 at 0.1–0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.2 mg/L gibberellins3 and was increased by 25%. However, the application of 6-benzyladenine led to decrease in the level of transient expression of green fluorescent protein. Conclusions The appropriate plant growth regulators at moderate concentration could be beneficial to the expression of foreign genes from the Agrobacterium-mediated transient expression system in plants. Thus, appropriate plant growth regulators could be considered as exogenous components that are applied for the production of recombinant protein by plant-based transient expression systems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Igor E. Kasheverov ◽  
Alexey I. Kuzmenkov ◽  
Denis S. Kudryavtsev ◽  
Ivan S. Chudetskiy ◽  
Irina V. Shelukhina ◽  
...  

Fluorescence can be exploited to monitor intermolecular interactions in real time and at a resolution up to a single molecule. It is a method of choice to study ligand-receptor interactions. However, at least one of the interacting molecules should possess good fluorescence characteristics, which can be achieved by the introduction of a fluorescent label. Gene constructs with green fluorescent protein (GFP) are widely used to follow the expression of the respective fusion proteins and monitor their function. Recently, a small synthetic analogue of GFP chromophore (p-HOBDI-BF2) was successfully used for tagging DNA molecules, so we decided to test its applicability as a potential fluorescent label for proteins and peptides. This was done on α-cobratoxin (α-CbTx), a three-finger protein used as a molecular marker of muscle-type, neuronal α7 and α9/α10 nicotinic acetylcholine receptors (nAChRs), as well as on azemiopsin, a linear peptide neurotoxin selectively inhibiting muscle-type nAChRs. An activated N-hydroxysuccinimide ester of p-HOBDI-BF2 was prepared and utilized for toxin labeling. For comparison we used a recombinant α-CbTx fused with a full-length GFP prepared by expression of a chimeric gene. The structure of modified toxins was confirmed by mass spectrometry and their activity was characterized by competition with iodinated α-bungarotoxin in radioligand assay with respective receptor preparations, as well as by thermophoresis. With the tested protein and peptide neurotoxins, introduction of the synthetic GFP chromophore induced considerably lower decrease in their affinity for the receptors as compared with full-length GFP attachment. The obtained fluorescent derivatives were used for nAChR visualization in tissue slices and cell cultures.


2021 ◽  
Vol 22 (22) ◽  
pp. 12274
Author(s):  
Damian Kolakowski ◽  
Weronika Rzepnikowska ◽  
Aneta Kaniak-Golik ◽  
Teresa Zoladek ◽  
Joanna Kaminska

VPS13 proteins are evolutionarily conserved. Mutations in the four human genes (VPS13A-D) encoding VPS13A-D proteins are linked to developmental or neurodegenerative diseases. The relationship between the specific localization of individual VPS13 proteins, their molecular functions, and the pathology of these diseases is unknown. Here we used a yeast model to establish the determinants of Vps13′s interaction with the membranes of Golgi apparatus. We analyzed the different phenotypes of the arf1-3 arf2Δ vps13∆ strain, with reduced activity of the Arf1 GTPase, the master regulator of Golgi function and entirely devoid of Vps13. Our analysis led us to propose that Vps13 and Arf1 proteins cooperate at the Golgi apparatus. We showed that Vps13 binds to the Arf1 GTPase through its C-terminal Pleckstrin homology (PH)-like domain. This domain also interacts with phosphoinositol 4,5-bisphosphate as it was bound to liposomes enriched with this lipid. The homologous domain of VPS13A exhibited the same behavior. Furthermore, a fusion of the PH-like domain of Vps13 to green fluorescent protein was localized to Golgi structures in an Arf1-dependent manner. These results suggest that the PH-like domains and Arf1 are determinants of the localization of VPS13 proteins to the Golgi apparatus in yeast and humans.


2021 ◽  
Author(s):  
Ke Li ◽  
Jinhui Kong ◽  
Shuo Zhang ◽  
Tong Zhao ◽  
Wenfeng Qian

While eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5'->3' movement (strictly unidirectional scanning model), other evidence has suggested that the ribosome uses small-amplitude 5'->3' and 3'->5' oscillations with a net 5'->3' movement to recognize the AUG codon (Brownian ratchet scanning model). Here, we generated 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of green fluorescent protein. We found that out-of-frame dATGs could inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. Computational simulations revealed that each triplet is scanned back and forth approximately ~10 times until an AUG codon is recognized. Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution and influence cancer development.


Sign in / Sign up

Export Citation Format

Share Document