scholarly journals Quantum Chemical Studies and Pharmacophore Modeling for Designing Novel Keap1 Antagonists that Enhance Nrf2 Mediated Neuroprotection

Author(s):  
. Srinidhi

In recent years, the significance of oxidative stress in the pathophysiology of Neurodegenerative/developmental disorders like Attention Deficit Hyperactivity Disorder, Parkinson's and Alzheimer's is being studied at an accelerating pace. Nrf2 activation via Keap1 inhibition is an established strategy for improving the activity of the cellular antioxidant mechanism. In this study, pharmacophore modeling was employed to design efficient Keap1 inhibitors from well-known polypharmacological phytochemicals after extensive structural modifications to improve their pharmacodynamic, pharmacokinetic and drug-likeness qualities (BBB > 0.9, HIA > 0.85). Density functional theory-based quantum chemical calculations at the B3LYP/6-31G (d, p) level of theory were performed for the geometry optimization of the novel ligands and for computing their electronic properties. Resveratrol-4 was found to be the most desirable candidate with an ΔE = 4.24497 eV. HOMO and LUMO distribution of the Resveratrol-4 was found to be very favourable for keap1 binding. Molecular docking studies and comparative interaction analysis also ranked the Resveratrol-4 derivative as the best multi-domain antagonist of the Keap1 protein with a binding affinity of -8 kcal/mole. The following study presents the application of Resveratrol-4 a novel, modified, phytochemical derivative, as an efficient antagonist of the Keap1 protein for enhancing nrf2 mediated neuroprotection from redox insults.

2021 ◽  
Author(s):  
FNU Srinidhi

In recent years, the significance of oxidative stress in the pathophysiology of Neurodegenerative/developmental disorders like Attention Deficit Hyperactivity Disorder, Parkinson's and Alzheimer's is being studied at an accelerating pace. Nrf2 activation via Keap1 inhibition is an established strategy for improving the activity of the cellular antioxidant mechanism. In this study, pharmacophore modeling was employed to design efficient Keap1 inhibitors from well-known polypharmacological phytochemicals after extensive structural modifications to improve their pharmacodynamic, pharmacokinetic and drug-likeness qualities (BBB > 0.9, HIA > 0.85). Density functional theory-based quantum chemical calculations at the B3LYP/6-31G (d, p) level of theory were performed for the geometry optimization of the novel ligands and for computing their electronic properties. Resveratrol-4 was found to be the most desirable candidate with an ΔE = 4.24497 eV. HOMO and LUMO distribution of the Resveratrol-4 was found to be very favourable for keap1 binding. Molecular docking studies and comparative interaction analysis also ranked the Resveratrol-4 derivative as the best multi-domain antagonist of the Keap1 protein with a binding affinity of -8 kcal/mole. The following study presents the application of Resveratrol-4 a novel, modified, phytochemical derivative, as an efficient antagonist of the Keap1 protein for enhancing nrf2 mediated neuroprotection from redox insults.


2020 ◽  
Author(s):  
. Srinidhi

In recent years, the significance of oxidative stress in the pathophysiology of Neurodegenerative/developmental disorders like Attention Deficit Hyperactivity Disorder, Parkinson's and Alzheimer's is being studied at an accelerating pace. Nrf2 activation via Keap1 inhibition is an established strategy for improving the activity of the cellular antioxidant mechanism. In this study, pharmacophore modeling was employed to design efficient Keap1 inhibitors from well-known polypharmacological phytochemicals after extensive structural modifications to improve their pharmacodynamic, pharmacokinetic and drug-likeness qualities (BBB > 0.9, HIA > 0.85). Density functional theory-based quantum chemical calculations at the B3LYP/6-31G (d, p) level of theory were performed for the geometry optimization of the novel ligands and for computing their electronic properties. Resveratrol-4 was found to be the most desirable candidate with an ΔE = 4.24497 eV. HOMO and LUMO distribution of the Resveratrol-4 was found to be very favourable for keap1 binding. Molecular docking studies and comparative interaction analysis also ranked the Resveratrol-4 derivative as the best multi-domain antagonist of the Keap1 protein with a binding affinity of -8 kcal/mole. The following study presents the application of Resveratrol-4 a novel, modified, phytochemical derivative, as an efficient antagonist of the Keap1 protein for enhancing nrf2 mediated neuroprotection from redox insults.


2020 ◽  
Author(s):  
. Srinidhi

In recent years, the significance of oxidative stress in the pathophysiology of Neurodegenerative/developmental disorders like Attention Deficit Hyperactivity Disorder, Parkinson's and Alzheimer's is being studied at an accelerating pace. Nrf2 activation via Keap1 inhibition is an established strategy for improving the activity of the cellular antioxidant mechanism. In this study, pharmacophore modeling was employed to design efficient Keap1 inhibitors from well-known polypharmacological phytochemicals after extensive structural modifications to improve their pharmacodynamic, pharmacokinetic and drug-likeness qualities (BBB > 0.9, HIA > 0.85). Density functional theory-based quantum chemical calculations at the B3LYP/6-31G (d, p) level of theory were performed for the geometry optimization of the novel ligands and for computing their electronic properties. Resveratrol-4 was found to be the most desirable candidate with and ΔE = 4.24497 eV. HOMO and LUMO distribution of the Resveratrol-4 was found to be very favourable for keap1 binding. Molecular docking studies and comparative interaction analysis also ranked the Resveratrol-4 derivative as the best multi-domain antagonist of the Keap1 protein with a binding affinity of -8 kcal/mole. The following study presents the application of Resveratrol-4 a novel, modified, phytochemical derivative, as an efficient antagonist of the Keap1 protein for enhancing nrf2 mediated neuroprotection from redox insults.


2020 ◽  
Author(s):  
. Srinidhi

In recent years, the significance of oxidative stress in the pathophysiology of Neurodegenerative/developmental diseases like Attention Deficit Hyperactivity Disorder, Parkinson’s and Alzheimer’s is being studied at an accelerating pace. Nrf2 activation via Keap1 inhibition is an established strategy for enhancing the activity of the cellular antioxidant mechanism. In this study pharmacophore modeling was employed to design efficient Keap1 inhibitors from well-known polypharmacological phytochemicals after extensive structural modifications to improve their pharmacodynamic, pharmacokinetic and drug-likeness qualities. Quantum chemical calculations at the B3LYP/6-31G (d, p) level of theory were performed for geometry optimization of the novel ligands and for computing their electronic properties. Molecular docking studies and comparative interaction analysis ranked the Resveratrol-4 derivative as the best multi-domain antagonist of the Keap1 protein. The following study presents the application of novel, modified, phytochemical derivatives, as efficient antagonists of the Keap1 protein for enhancing neuroprotection from redox insults.


2020 ◽  
Author(s):  
. Srinidhi

In recent years, the significance of oxidative stress in the pathophysiology of Neurodegenerative/developmental diseases like Attention Deficit Hyperactivity Disorder, Parkinson’s and Alzheimer’s is being studied at an accelerating pace. Nrf2 activation via Keap1 inhibition is an established strategy for enhancing the activity of the cellular antioxidant mechanism. In this study pharmacophore modeling was employed to design efficient Keap1 inhibitors from well-known polypharmacological phytochemicals after extensive structural modifications to improve their pharmacodynamic, pharmacokinetic and drug-likeness qualities. Quantum chemical calculations at the B3LYP/6-31G (d, p) level of theory were performed for geometry optimization of the novel ligands and for computing their electronic properties. Molecular docking studies and comparative interaction analysis ranked the Resveratrol-4 derivative as the best multi-domain antagonist of the Keap1 protein. The following study presents the application of novel, modified, phytochemical derivatives, as efficient antagonists of the Keap1 protein for enhancing neuroprotection from redox insults.


Author(s):  
Ehouman Ahissan Donatien ◽  
Bamba Kafoumba ◽  
Kogbi Guy Roland ◽  
Bamba Amara ◽  
Kouakou Adjoumani Rodrigue ◽  
...  

Atenolol was examined as a copper corrosion inhibitor in 1M nitric acid solution using the mass loss technique and quantum chemical studies, based on density functional theory (DFT) at the B3LYP level with the base 6-311G (d,p). The inhibitory efficiency of the molecule increases with increasing concentration and temperature. The adsorption of the molecule on the copper surface follows the modified Langmuir model. The thermodynamic quantities of adsorption and activation were determined and discussed. The calculated quantum chemical parameters related to the inhibition efficiency are the energy of the highest occupied molecular orbital E(HOMO), the energy of the lowest unoccupied molecular orbital E(LUMO), the HOMO-LUMO energy gap, the hardness (η), softness (S), dipole moment (μ), electron affinity (A), ionization energy (I), absolute electronegativity (χ),absolute electronegativity (χ), fraction (ΔN) of electrons transferred from Atenolol to copper and electrophilicity index(ω). The local reactivity was analyzed through the condensed Fukui function and condensed softness indices to determine the nucleophilic and electrophilic attack sites. There is good agreement between the experimental and theoretical results.


2018 ◽  
Vol 55 (6A) ◽  
pp. 51
Author(s):  
Pham Vu Nhat

Quantum chemical calculations are employed to examine the interactions of hydrolysis products of cis-[PtCl2(iPram)(Hpz)] with the purine base site of DNA using guanosine as a model reactant. Thermodynamic parameters, electronic structures, bonding characteristics and spectroscopic properties of the resulting complexes are investigated in the framework of density functional theory (B3LYP functional) along with correlation consistent basis sets. Computed results show that these interactions are dominated by electrostatic effects, namely H-bond contributions. Another remarkable finding is that the replacement of amine groups by larger ones accompanies with a moderate reaction between PtII and guanosine.


Author(s):  
Tanveer Hasan ◽  
P. K. Singh ◽  
S. H. Mehdi

Theoretical quantum chemical studies and spectroscopic investigations on “Dimethylbipyridinylzinc (0) C12H14N2Zn” have been carried out. The quantum chemical density functional theory (DFT) method at B3LYP/3-21G level is used to obtain the equilibrium geometries. We have also performed vibrational analysis of the title compound at their equilibrium geometries and established the complete assignments of the significant vibrational modes. The NLO behaviour of the title compound is described by electric parameters like dipole moment, polarizability and first hyperpolarizability. Besides it the thermodynamical and electronic parameters are also calculated to get a better insight of the molecule under study.


Sign in / Sign up

Export Citation Format

Share Document