scholarly journals Flexible and Responsive Nature of 2D Layered Conductive Metal-Organic Frameworks Determine Their Catalytic Activity in Oxidative Dehydrogenation of Propane

Author(s):  
Mohammad R. Momeni ◽  
Zeyu Zhang ◽  
Farnaz A. Shakib

A multi-faceted approach is introduced for investigating the effects of intrinsic and guest(water)-induced structural transformations/deformations and heterogeneity on catalytic activity of the 2D π-stacked layered Co3(HTTP)2, HTTP = hexathiotriphenylene, metal-organic framework. Through comprehensive molecular dynamics simulations coupled with periodic and cluster electronic structure calculations, we uncover a complex array of catalytically active sites in 2D Co3(HTTP)2 MOF which would have been entirely missed if conventional static electronic structure methods were to be employed.

2020 ◽  
Author(s):  
Mohammad R. Momeni ◽  
Zeyu Zhang ◽  
Farnaz A. Shakib

A multi-faceted approach is introduced for investigating the effects of intrinsic and guest(water)-induced structural transformations/deformations and heterogeneity on catalytic activity of the 2D π-stacked layered Co3(HTTP)2, HTTP = hexathiotriphenylene, metal-organic framework. Through comprehensive molecular dynamics simulations coupled with periodic and cluster electronic structure calculations, we uncover a complex array of catalytically active sites in 2D Co3(HTTP)2 MOF which would have been entirely missed if conventional static electronic structure methods were to be employed.


Author(s):  
Khorsed Alam ◽  
Tisita Das ◽  
Sudip Chakraborty ◽  
Prasenjit Sen

Electronic structure calculations based on density functional theory are used to identify the catalytically active sites for the hydrogen evolution reaction on single layers of the two transition metal tri-chalcogenide...


2019 ◽  
Vol 21 (31) ◽  
pp. 17109-17117 ◽  
Author(s):  
Diandong Tang ◽  
Wei-Hai Fang ◽  
Lin Shen ◽  
Ganglong Cui

The MM/SQC method combined with electronic structure calculations at the level of OM2/MRCI and on-the-fly nonadiabatic dynamics simulations.


2020 ◽  
Author(s):  
Ali Raza ◽  
Arni Sturluson ◽  
Cory Simon ◽  
Xiaoli Fern

Virtual screenings can accelerate and reduce the cost of discovering metal-organic frameworks (MOFs) for their applications in gas storage, separation, and sensing. In molecular simulations of gas adsorption/diffusion in MOFs, the adsorbate-MOF electrostatic interaction is typically modeled by placing partial point charges on the atoms of the MOF. For the virtual screening of large libraries of MOFs, it is critical to develop computationally inexpensive methods to assign atomic partial charges to MOFs that accurately reproduce the electrostatic potential in their pores. Herein, we design and train a message passing neural network (MPNN) to predict the atomic partial charges on MOFs under a charge neutral constraint. A set of ca. 2,250 MOFs labeled with high-fidelity partial charges, derived from periodic electronic structure calculations, serves as training examples. In an end-to-end manner, from charge-labeled crystal graphs representing MOFs, our MPNN machine-learns features of the local bonding environments of the atoms and learns to predict partial atomic charges from these features. Our trained MPNN assigns high-fidelity partial point charges to MOFs with orders of magnitude lower computational cost than electronic structure calculations. To enhance the accuracy of virtual screenings of large libraries of MOFs for their adsorption-based applications, we make our trained MPNN model and MPNN-charge-assigned computation-ready, experimental MOF structures publicly available.<br>


2016 ◽  
Vol 18 (1) ◽  
pp. 403-413 ◽  
Author(s):  
Bin-Bin Xie ◽  
Shu-Hua Xia ◽  
Xue-Ping Chang ◽  
Ganglong Cui

Sequential vs. concerted S1 relaxation pathways.


2018 ◽  
Vol 20 (9) ◽  
pp. 6524-6532 ◽  
Author(s):  
Meng Che ◽  
Yuan-Jun Gao ◽  
Yan Zhang ◽  
Shu-Hua Xia ◽  
Ganglong Cui

Pigment Yellow 101 (PY101) is widely used as a typical pigment due to its excellent excited-state properties.


2019 ◽  
Vol 21 (19) ◽  
pp. 10086-10094 ◽  
Author(s):  
Shu-Hua Xia ◽  
Meng Che ◽  
Yan Liu ◽  
Yan Zhang ◽  
Ganglong Cui

The photochemical mechanism of 1,5-benzodiazepin-2-one is studied by combined static electronic structure calculations and nonadiabatic surface-hopping dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document