mechanistic insight
Recently Published Documents





Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 178
Federica Barutta ◽  
Stefania Bellini ◽  
Marilena Durazzo ◽  
Gabriella Gruden

Periodontitis and diabetes are two major global health problems despite their prevalence being significantly underreported and underestimated. Both epidemiological and intervention studies show a bidirectional relationship between periodontitis and diabetes. The hypothesis of a potential causal link between the two diseases is corroborated by recent studies in experimental animals that identified mechanisms whereby periodontitis and diabetes can adversely affect each other. Herein, we will review clinical data on the existence of a two-way relationship between periodontitis and diabetes and discuss possible mechanistic interactions in both directions, focusing in particular on new data highlighting the importance of the host response. Moreover, we will address the hypothesis that trained immunity may represent the unifying mechanism explaining the intertwined association between diabetes and periodontitis. Achieving a better mechanistic insight on clustering of infectious, inflammatory, and metabolic diseases may provide new therapeutic options to reduce the risk of diabetes and diabetes-associated comorbidities.

Christopher Choi ◽  
David Ashby ◽  
You Rao ◽  
Elaf Anber ◽  
James L. Hart ◽  

Wentian Zou ◽  
Liuzhou Gao ◽  
Jia Cao ◽  
Zhenxing Li ◽  
Guoao Li ◽  

Physiology ◽  
2022 ◽  
Michelle W. Voss ◽  
Shivangi Jain

Physical activity has shown tremendous promise for counteracting cognitive aging, but also tremendous variability in cognitive benefits. We describe evidence for how exercise affects cognitive and brain aging, and whether cardiorespiratory fitness is a key factor. We highlight a brain network framework as a valuable paradigm for the mechanistic insight needed to tailor physical activity for cognitive benefits.

2022 ◽  
Vol 62 (1) ◽  
pp. 617-639
Xiaojing Wang ◽  
Qirong Lu ◽  
Jingchao Guo ◽  
Irma Ares ◽  
Marta Martínez ◽  

Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.

Sign in / Sign up

Export Citation Format

Share Document