catalytically active
Recently Published Documents


TOTAL DOCUMENTS

2591
(FIVE YEARS 612)

H-INDEX

107
(FIVE YEARS 15)

Small ◽  
2022 ◽  
pp. 2107371
Author(s):  
Hui Chen ◽  
Mingcheng Zhang ◽  
Kexin Zhang ◽  
Zhenyu Li ◽  
Xiao Liang ◽  
...  

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Ole Bunjes ◽  
Lucas A. Paul ◽  
Xinyue Dai ◽  
Hongyan Jiang ◽  
Tobias Claus ◽  
...  

AbstractAtomic scale studies of the anchoring of catalytically active complexes to surfaces may provide valuable insights for the design of new catalytically active hybrid systems. In this work, the self-assembly of 1D, 2D and 3D structures of the complex fac-Re(bpy)(CO)3Cl (bpy = 2,2′-bipyridine), a CO2 reduction catalyst, on the Ag(001) surface are studied by a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Infrared and sum frequency generation spectroscopy confirm that the complex remains chemically intact under sublimation. Deposition of the complexes onto the silver surface at 300 K leads to strong local variations in the resulting surface coverage on the nanometer scale, indicating that in the initial phase of deposition a large fraction of the molecules is desorbing from the surface. Low coverage regions show a decoration of step edges aligned along the crystal’s symmetry axes <110>. These crystallographic directions are found to be of major importance to the binding of the complexes to the surface. Moreover, the interaction between the molecules and the substrate promotes the restructuring of surface steps along these directions. Well-aligned and decorated steps are found to act as nucleation point for monolayer growth (2D) before 3D growth starts.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 390
Author(s):  
Martyna Rzelewska-Piekut ◽  
Zuzanna Wiecka ◽  
Magdalena Regel-Rosocka

The paper presents basic studies on the precipitation of platinum, palladium, rhodium, and ruthenium nanoparticles from model acidic solutions using sodium borohydride, ascorbic acid, and sodium formate as reducing agents and polyvinylpyrrolidone as a stabilizing agent. The size of the obtained PGM particles after precipitation with NaBH4 solution does not exceed 55 nm. NaBH4 is an efficient reducer; the precipitation yields for Pt, Pd, Ru, Rh are 75, 90, 65 and 85%, respectively. By precipitation with ascorbic acid, it is possible to efficiently separate Pt, Rh, and Ru from Pd from the two-component mixtures. The obtained Pt, Pd, and Rh precipitates have the catalytic ability of the catalytic reaction of p-nitrophenol to p-aminophenol. The morphological characteristic of the PGM precipitates was analyzed by AFM, SEM-EDS, and TEM.


2022 ◽  
Vol 119 (2) ◽  
pp. e2114994119
Author(s):  
Benjamin J. LaFrance ◽  
Johanna Roostalu ◽  
Gil Henkin ◽  
Basil J. Greber ◽  
Rui Zhang ◽  
...  

Microtubules (MTs) are polymers of αβ-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis–deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kootak Hong ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Sung Hwan Cho ◽  
Seeram Ramakrishna ◽  
...  

AbstractDirect consideration for both, the catalytically active species and the host materials provides highly efficient strategies for the architecture design of nanostructured catalysts. The conventional wet chemical methods have limitations in achieving such unique layer-by-layer design possessing one body framework with many catalyst parts. Herein, an innovative physical method is presented that allows the well-regulated architecture design for an array of functional nanocatalysts as exemplified by layer-by-layer adornment of Pd nanoparticles (NPs) on the highly arrayed silica nanorods. This spatially confined catalyst exhibits excellent efficiency for the hydrogenation of nitroarenes and widely deployed Suzuki cross-coupling reactions; their facile separation from the reaction mixtures is easily accomplished due to the monolithic structure. The generality of this method for the introduction of other metal source has also been demonstrated with Au NPs. This pioneering effort highlights the feasibility of physically controlled architecture design of nanostructured catalysts which may stimulate further studies in the general domain of the heterogeneous catalytic transformations.


2022 ◽  
Author(s):  
Zisis Koutsogiannis ◽  
John Mina ◽  
Christin Albus ◽  
Mattijus Kol ◽  
Joost Holthuis ◽  
...  

Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause foetal damage and abortion in both animals and humans. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localisation and analyses of the Toxoplasma ceramide synthases Tg CerS1 and Tg CerS2 and, using a conditional gene regulation approach, establish their roles in pathogenicity and parasite fitness. Interestingly, we observed that whilst Tg CerS1 was a fully functional orthologue of the yeast Lag1p capable of catalysing the conversion of sphinganine to ceramide, in contrast Tg CerS2 was catalytically inactive. Furthermore, genomic deletion of Tg CerS1 using CRISPR/Cas-9 led to viable but slow growing parasites indicating its importance but not indispensability. In contrast, genomic knock out of Tg CerS2 was only accessible utilising the rapamycin-inducible Cre recombinase system. Surprisingly, the results demonstrated that this ‘pseudo’ ceramide synthase, Tg CerS2, has an even greater role in parasite fitness than its catalytically active orthologue (Tg CerS1). Phylogenetic analyses indicated that, as in humans and plants, the ceramide synthase isoforms found in Toxoplasma and other Apicomplexa arose through gene duplication. However, in the Apicomplexa the duplicated copy subsequently evolved into a non-functional ‘pseudo’ ceramide synthase. This arrangement is unique to the Apicomplexa and further illustrates the unusual biology that characterize these protozoan parasites, a feature that could potentially be exploited in the development of new antiprotozoals.


2022 ◽  
Author(s):  
Jonathan Kephart ◽  
Benjamin Mitchell ◽  
Werner Kaminsky ◽  
Alexandra Velian

This study provides detailed insights into the interconnected reactivity of the three catalytically active sites of an atomically precise nanocluster Cr3(py)3Co6Se8L6 (Cr3(py)3, L = Ph2PNTol–, Ph = phenyl, Tol = 4-tolyl). Catalytic and stoichiometric studies into tosyl azide activation and carbodiimide formation enabled the isolation and crystallographic characterization of key metal-nitrenoid catalytic intermediates, including the tris(nitrenoid) cluster Cr3(NTs)3, the catalytic resting state Cr3(NTs)3(CNtBu)3, and the mono(nitrenoid) cluster Cr3(NTs)(CNtBu)2. Nitrene transfer proceeds via a stepwise mechanism, with the three active sites engaging sequentially to produce carbodiimide. Comparative structural analysis and CNtBu bind-ing studies reveal that the chemical state of neighboring active sites regulates the affinity for substrates of an individual Cr-nitrenoid edge site, intertwining their reactivity through the inorganic support.


Author(s):  
Minh Thu Ma ◽  
Maria Rain Jennings ◽  
John Blazeck ◽  
Raquel L. Lieberman

Homo sapiens adenosine deaminase 1 (HsADA1; UniProt P00813) is an immunologically relevant enzyme with roles in T-cell activation and modulation of adenosine metabolism and signaling. Patients with genetic deficiency in HsADA1 suffer from severe combined immunodeficiency, and HsADA1 is a therapeutic target in hairy cell leukemias. Historically, insights into the catalytic mechanism and the structural attributes of HsADA1 have been derived from studies of its homologs from Bos taurus (BtADA) and Mus musculus (MmADA). Here, the structure of holo HsADA1 is presented, as well as biochemical characterization that confirms its high activity and shows that it is active across a broad pH range. Structurally, holo HsADA1 adopts a closed conformation distinct from the open conformation of holo BtADA. Comparison of holo HsADA1 and MmADA reveals that MmADA also adopts a closed conformation. These findings challenge previous assumptions gleaned from BtADA regarding the conformation of HsADA1 that may be relevant to its immunological interactions, particularly its ability to bind adenosine receptors. From a broader perspective, the structural analysis of HsADA1 presents a cautionary tale for reliance on homologs to make structural inferences relevant to applications such as protein engineering or drug development.


Sign in / Sign up

Export Citation Format

Share Document