scholarly journals From “inverted” to “superdirect“ bonds: a general concept connecting substituent angles with sigma bond strengths. The case of the CC bonds in hydrocarbons.

Author(s):  
Rubén Laplaza ◽  
Julia Contreras-García ◽  
Franck Fuster ◽  
François Volatron ◽  
Patrick Chaquin

<div>The C-C dissociation energy with respect to geometry frozen fragments (BE) has been calculated for C2H6 as a function of  = H-C-C angles. BE decreases rapidly when  decreases from its equilibrium value to yield the so-called “inverted bonds” for  < 90°; on the contrary BE increases</div><div>when  increases to yield somehow “superdirect” bonds, following a sigmoidal variation. The central bond in Si2H6, Ge2H6 and N 2H4 as well as the C-H bond in CH3-H behaves similarly. The concept of “invertedness”/”directedness” is generalized to any CC sigma bond in hydrocarbons and characterized by the mean angle value <> of substituents. Using dynamic orbital forces (DOF) as indices, the intrinsic  bond energies are studied as a function of <> for formally single bonds in a</div><div>panel of 22 molecules. This energy decreases from the strongest “superdirect” bonds in butadiyne, (<> = 180°) or tetrahedrylacetylene to the weakest “inverted bond” in cyclobutene, tetrahedrane, bicyclobutane and [1.1.1]propellane (<> = 60°), according to a sigmoidal variation. The <> parameter appears as a crude, but straightforward and robust, index of strain in cyclic molecules. Sigma bonds in multiple bonds of a panel of 11 molecules have most of time <> values less than 90°</div><div>and are significantly weaker than standard single bonds. Thus they can be considered as formally inverted or near inverted.</div><div><br></div>

2020 ◽  
Author(s):  
Rubén Laplaza ◽  
Julia Contreras-García ◽  
Franck Fuster ◽  
François Volatron ◽  
Patrick Chaquin

The A-A dissociation energy with respect to geometry frozen fragments (BE) of has been calculated for AHn-AHn models (C2H6, Si2H6, Ge2H6 and N2H4) as a function of  = H-A-A angles. Following a sigmoidal variation, BE decreases rapidly when  decreases to yield “inverted bonds” for  < 90° and finally nearly vanishes. On the contrary BE increases when  increases with respect to the equilibrium value; we propose the term of “superdirect” to qualify such bonds. This behaviour has been qualitatively interpreted in the case of C2H6 by the variation of the overlap of both s+p hybrids. The BE of one C-H bond in CH3 behaves similarly as function of its H-C-H angle with the other three hydrogen atoms. The concept of inverted/direct/superdirect bond is generalized to any CC sigma bond in hydrocarbons and can be characterized by the mean angle value <> of this bond with substituents (multiple-bonded substituents are considered as several substituents). This applies as well to formal single bonds as to sigma bonds in a formally multiple bond. <br>


2020 ◽  
Author(s):  
Rubén Laplaza ◽  
Julia Contreras-García ◽  
Franck Fuster ◽  
François Volatron ◽  
Patrick Chaquin

The A-A dissociation energy with respect to geometry frozen fragments (BE) of has been calculated for AHn-AHn models (C2H6, Si2H6, Ge2H6 and N2H4) as a function of  = H-A-A angles. Following a sigmoidal variation, BE decreases rapidly when  decreases to yield “inverted bonds” for  < 90° and finally nearly vanishes. On the contrary BE increases when  increases with respect to the equilibrium value; we propose the term of “superdirect” to qualify such bonds. This behaviour has been qualitatively interpreted in the case of C2H6 by the variation of the overlap of both s+p hybrids. The BE of one C-H bond in CH3 behaves similarly as function of its H-C-H angle with the other three hydrogen atoms. The concept of inverted/direct/superdirect bond is generalized to any CC sigma bond in hydrocarbons and can be characterized by the mean angle value <> of this bond with substituents (multiple-bonded substituents are considered as several substituents). This applies as well to formal single bonds as to sigma bonds in a formally multiple bond. <br>


An extensive investigation has been made of Roby’s (Molec. Phys. 27, 81 (1974)) projection-density method for electron population analysis, particularly as applied to extended basis molecular wave functions. In the developed method maximum possible populations are ascribed to atomic s.c.f. orbitals and minimum possible populations to polarization functions. Roby populations are reported for a range of diatomic and simple polyatomic molecules. For a given coordination number, the Roby atomic population n A reflects the electronegativities of an atom and its ligands. By equipartition of shared populations, atomic charges may also be defined. The two-centre shared populations s AB = n A + n B — are found to be coherent indicators of bond strengths. For conventional single bonds, s AB can often be roughly interpreted as S AB » 2 S ab ,where S ab is the overlap integral between the two hybrid atomic orbitals defined by a localized molecular orbital representing the A -B bond. Multiple bonds can be interpreted similarly. Multi-centre shared populations s ABC , s ABCD are helpful in descriptions o f the bonding in B 2 H 6 and P 4 . The Roby projector technique is particularly useful in determining the unique effects of polarization functions. Several wave functions for NF 3 and SO 3 are examined in detail, and the sulphur d functions are confirmed as the most important polarization functions. Various technical aspects of the Roby method are also explored, and the method is shown to have some significant advantages over the widely used Mulliken ( J. chem. Phys. 23, 1833 (1955)) method of population analysis.


1976 ◽  
Vol 98 (2) ◽  
pp. 297-302 ◽  
Author(s):  
K. G. T. Hollands ◽  
K. C. Goel

The general concept of the mean diameter of the disperse phase of an aerosol system, first introduced by Mugele and Evans in 1951, has proven to be a very useful one. In this concept, the proper mean diameter, xp,q, is characterized by a single pair of indices, p and q, which are dependent on the actual type of aerosol system under consideration. This paper re-examines the validity of this concept of mean diameter in heat and mass transfer aerosol systems. The concept is found to be applicable only under a very narrow range of conditions. Attention is then given to a more general definition of a mean diameter, applicable to aerosol heat or mass exchangers. Analyses of these devices shows that the more general mean diameter is a function of the capacity rate ratio, R, and effectiveness of the heat exchanger, ε. Solutions to the governing equations have permitted the mean diameter to be presented graphically as a function of these variables. These solutions are given for two types of particle size distributions, the Rosin-Rammler and the log-probability, and for both parallel-flow and counter-flow heat exchangers. The solutions are, however, restricted to cases where the resistance to heat or mass transfer lies exclusively in the continuous phase.


Nature ◽  
1959 ◽  
Vol 184 (4695) ◽  
pp. 1313-1313 ◽  
Author(s):  
J. E. BLOOR ◽  
S. GARTSIDE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document