polarization functions
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Montgomery Gray ◽  
John Herbert

Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better-performing alternatives, while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge-embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Although errors can be reduced in a systematic way using correlation-consistent basis sets, similar performance at lower cost is obtained using Karlsruhe basis sets, and we introduce new versions with limited augmentation (diffuse functions) that are even more efficient. Pople-style basis sets, which are even more efficient, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using basis sets of triple-zeta quality. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "delta(Hartree-Fock)" correction that accounts for high-order induction can be performed in double-zeta basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4x speedup over the existing (cubic-scaling) XSAPT approach.


Author(s):  
Sen Yang ◽  
Qiaofei Liu ◽  
Quan Liao

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.


2021 ◽  
Vol 9 (2) ◽  
pp. 94-107
Author(s):  
Akin Azizoglu ◽  
◽  
Zuleyha Ozer ◽  
Carikci Sema ◽  
Turgut Kilic ◽  
...  

Sideroxol, a kaurene diterpene, was obtained from the acetone extract of Sideritis stricta plant. The ground-state molecular geometry, vibrational frequencies, and NMR chemical shifts were also investigated by using various density functional theories and Pople basis sets. The computed geometries are in good conformity with the experimental data. The comparison between theory and experiments indicates that B3LYP and M06 methods with the 6-31G(d) basis set are able to provide satisfactory results for predicting vibrational and NMR properties. There seems to be no significant effect of addition of diffuse and polarization functions in the basis set used herein.


2020 ◽  
Author(s):  
Mohsen Doust Mohammadi ◽  
Hewa Y Abdullah

DFT were put into practice to study the nature of the intermolecular interactions between 1-Chloro-1,2,2,2-tetrafluoroethane (HCFC-124) gas molecule and pristine, aluminium, and galium doped single-walled boron nitride nanosheets (BNNS). For performing optimization process, various functionals including PBE0, M06-2X, ωB97XD, and B3LYP-D3 were applied on both of the isolated and complex structures. All of the functionals were used together with split-valence triple-zeta basis sets with d-type Cartesian-Gaussian polarization functions (6-311G(d)). To consider the electronic structure, DOS analysis were employed. NBO, QTAIM, and NCI analyses were also taken on board to discover the nature of intermolecular interactions between gas and nanosheets using the same level of theory. The results of electronic structure calculations as well as population analyses has been carefully tabulated and partially depicted. The HOMO-LUMO energy gap was dramatically changed when the dopant atom added to the BNNS. It means the impurity can improve the sensivity and reactivity of the pristine nanosheet; therefore, by absorbing the HCFC-124 onto the surface of the titled nanosheets, a salient signal can produce in a typical electronic circuit. Among all of the absorbents, Al-doped BNNS shows the most favorable material to design a nanosensor for the studied gas molecule.


2020 ◽  
Vol 26 (10) ◽  
Author(s):  
Milena Palhares Maringolo ◽  
Ana Cristina Mora Tello ◽  
Amanda Ribeiro Guimarães ◽  
Júlia Maria Aragon Alves ◽  
Francisco das Chagas Alves Lima ◽  
...  

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Robert V. Harlander ◽  
Fabian Lange ◽  
Tobias Neumann

Abstract The gradient-flow operator product expansion for QCD current correlators including operators up to mass dimension four is calculated through NNLO. This paves an alternative way for efficient lattice evaluations of hadronic vacuum polarization functions. In addition, flow-time evolution equations for flowed composite operators are derived. Their explicit form for the non-trivial dimension-four operators of QCD is given through order $$ {\alpha}_s^3. $$ α s 3 .


2020 ◽  
Vol 22 (48) ◽  
pp. 27979-27986
Author(s):  
Kevin Scholten ◽  
Elric Engelage ◽  
Christian Merten

Using chiral tosylates as model systems we evaluate the effect of diffuse and polarization functions on the quality of predicted VCD and IR spectra. Polarization functions on sulfur are shown to be important to reliable determine ACs using VCD.


Nanophotonics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 2257-2267 ◽  
Author(s):  
Hailong Zhou ◽  
Yuhe Zhao ◽  
Yanxian Wei ◽  
Feng Li ◽  
Jianji Dong ◽  
...  

AbstractWith the great developments in optical communication technology and large-scale optical integration technology, it is imperative to realize the traditional functions of polarization processing on an integration platform. Most of the existing polarization devices, such as polarization multiplexers/demultiplexers, polarization controllers, polarization analyzers, etc., perform only a single function. Definitely, integrating all these polarization functions on a chip will increase function flexibility and integration density and also cut the cost. In this article, we demonstrate an all-in-one chip-scale polarization processor based on a linear optical network. The polarization functions can be configured by tuning the array of phase shifters on the chip. We demonstrate multiple polarization processing functions, including those of a multiple-input-multiple-output polarization descrambler, polarization controller, and polarization analyzer, which are the basic building blocks of polarization processing. More functions can be realized by using an additional two-dimensional output grating. A numerical gradient descent algorithm is employed to self-configure and self-optimize these functions. Our demonstration suggests great potential for chip-scale, reconfigurable, and fully programmable photonic polarization processors with the artificial intelligence algorithm.


2018 ◽  
Vol 121 (20) ◽  
Author(s):  
Peter Boyle ◽  
Renwick James Hudspith ◽  
Taku Izubuchi ◽  
Andreas Jüttner ◽  
Christoph Lehner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document