single bonds
Recently Published Documents


TOTAL DOCUMENTS

434
(FIVE YEARS 49)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Viki Kumar Prasad ◽  
M. Hossein Khalilian ◽  
Alberto Otero-de-la-Roza ◽  
Gino A. DiLabio

AbstractWe present an extensive and diverse dataset of bond separation energies associated with the homolytic cleavage of covalently bonded molecules (A-B) into their corresponding radical fragments (A. and B.). Our dataset contains two different classifications of model structures referred to as “Existing” (molecules with associated experimental data) and “Hypothetical” (molecules with no associated experimental data). In total, the dataset consists of 4502 datapoints (1969 datapoints from the Existing and 2533 datapoints from the Hypothetical classes). The dataset covers 49 unique X-Y type single bonds (except H-H, H-F, and H-Cl), where X and Y are H, B, C, N, O, F, Si, P, S, and Cl atoms. All the reference data was calculated at the (RO)CBS-QB3 level of theory. The reference bond separation energies are non-relativistic ground-state energy differences and contain no zero-point energy corrections. This new dataset of bond separation energies (BSE49) is presented as a high-quality reference dataset for assessing and developing computational chemistry methods.


2021 ◽  
Vol 7 (3) ◽  
pp. 66
Author(s):  
Tong Liu ◽  
T. John S. Dennis

With the aim of determining the best input geometry for DFT calculations of [60]PCBM, the geometry of 24 chemically possible [60]PCBM conformers were optimised and their electronic energies and average bond strains were determined. A DFT analysis of the relevant dihedral angles provided insights into the dynamical behaviour of the ester group through sterically restricted bond rotations. In addition, the 13C NMR spectra of the six better performing conformers were simulated and compared with an experiment. There is a close correlation between average bond strain, total electronic energy and mean absolute error of the simulated 13C NMR spectra of the ester carbons. The best overall candidate conformer for the input geometry had the C61-C4, C4-C3 and C3-C2 single bonds of the alkyl chain in syn, anti and anti arrangements, respectively, and had the C2-C1 and C1-O single bonds of the ester in syn and anti arrangements, respectively. This contrasts strikingly with most representations of PCBM in the literature, which depict all relevant bonds in anti arrangements.


Synlett ◽  
2021 ◽  
Author(s):  
Naoki Ishida ◽  
Mingon Son ◽  
Tairin Kawasaki ◽  
Misato Ito ◽  
Masahiro Murakami

A photoinduced dehydrogenative homo-coupling reaction of alkylarenes is reported. Gaseous hydrogen is evolved as the sole byproduct and neither oxidants nor hydrogen acceptors are required. The present reaction offers an environmentally benign and atom-economical means for forming sterically strained C–C single bonds. It also gives a remarkable example of photo-driven reactions overcoming a considerable rise in energy.


Author(s):  
Edmund S. Doerksen ◽  
Ryan C. Fortenberry

The atoms contributing to the strongest “single bonds” on the periodic table do not continue to produce the strongest “double bonds” or “triple bonds.” In fact, the opposite appears to be the case. This quantum chemical examination of nominal X = Y and X ≡ Y bonds in model molecules of atoms from the first three rows of the periodic table shows that the strongest “double bond” is in formaldehyde once the astrophysically-depleted Be and B atoms are removed from consideration. The strongest “triple bond” is a close match between acetylene and N2. However, these results indicate that astrophysical regions containing a high abundance of hydride species will likely be areas where inorganic oxide formation is favored. Those where H2 molecules have already been dissociated will favor organic/volatile astrochemistry.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hui Li ◽  
Ryutaro Komatsu ◽  
Jihane Hankache ◽  
Hisahiro Sasabe ◽  
Latevi Max Lawson Daku ◽  
...  

A series of bis(triphenylamine)benzodifuran chromophores have been synthesized and fully characterised. Starting from suitably functionalized benzodifuran (BDF) precursors, two triphenylamine (TPA) moieties are symmetrically coupled to a central BDF unit either at 4,8-positions through double bonds (1) and single bonds (2) respectively, or at 2,6-positions through double bonds (3). Their electronic absorption and photoluminescence properties as well as redox behaviour have been investigated in detail, indicating that the π-extended conjugation via vinyl linkers in 1 and 3 leads to comparatively strong electronic interactions between the relevant redox moieties TPA and BDF. Due to intriguing electronic properties and structural planarity, 3a has been applied as a dopant emitter in organic light-emitting diodes. A yellowish-green OLED exhibits a high external quantum efficiency (EQE) of 6.2%, thus exceeding the theoretical upper limit most likely due to energy transfer from an interface exciplex to an emissive layer and/or favorable horizontal orientation.


Sign in / Sign up

Export Citation Format

Share Document