Low Electronic Conductivity of Li7La3Zr2O12 (LLZO) Solid Electrolytes from First Principles

Author(s):  
Alex Squires ◽  
Daniel Davies ◽  
Sunghyun Kim ◽  
David Scanlon ◽  
Aron Walsh ◽  
...  

Lithium-rich garnets such as Li7 La3 Zr2 O12 (LLZO) are promising solid electrolytes with potential applications in all–solid-state lithium-ion batteries. The practical use of lithium-garnet electrolytes is currently limited by pervasive lithium-dendrite growth during battery cycling, which leads to short-circuiting and cell failure. One proposed mechanism for dendrite growth is the reduction of lithium ions to lithium metal within the electrolyte. Lithium garnets have been proposed to be susceptible to this growth mechanism due to high electronic conductivities [Han et al. Nature Ener. 4 187, 2019]. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterised. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally-insulating material under variable synthesis and operating conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole carrier-concentrations in bulk LLZO are negligible, irrespective of initial synthesis conditions, and electron and hole mobilities are low (<1 cm2 V−1 s−1 ). These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite formation during cell operation. Any non-negligible electronic conductivity in lithium garnets is therefore likely due to extended defects or surface contributions.

2020 ◽  
Author(s):  
Alex Squires ◽  
Daniel Davies ◽  
Sunghyun Kim ◽  
David Scanlon ◽  
Aron Walsh ◽  
...  

Lithium-rich garnets such as Li7 La3 Zr2 O12 (LLZO) are promising solid electrolytes with potential applications in all–solid-state lithium-ion batteries. The practical use of lithium-garnet electrolytes is currently limited by pervasive lithium-dendrite growth during battery cycling, which leads to short-circuiting and cell failure. One proposed mechanism for dendrite growth is the reduction of lithium ions to lithium metal within the electrolyte. Lithium garnets have been proposed to be susceptible to this growth mechanism due to high electronic conductivities [Han et al. Nature Ener. 4 187, 2019]. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterised. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally-insulating material under variable synthesis and operating conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole carrier-concentrations in bulk LLZO are negligible, irrespective of initial synthesis conditions, and electron and hole mobilities are low (<1 cm2 V−1 s−1 ). These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite formation during cell operation. Any non-negligible electronic conductivity in lithium garnets is therefore likely due to extended defects or surface contributions.


2020 ◽  
Author(s):  
Jordi Sastre ◽  
Moritz H. Futscher ◽  
Lea Pompizi ◽  
Abdessalem Aribia ◽  
Agnieszka Priebe ◽  
...  

Lithium garnet Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) electrolyte is a potential candidate for the development of solid-state batteries with lithium metal as high-capacity anode. But ceramic LLZO in the form of pellets or polycrystalline films can still suffer from lithium dendrite penetration because of surface and bulk inhomogeneities and grain boundaries with non-negligible electronic conductivity. In contrast, the amorphous phase of LLZO (aLLZO) possesses a grain-boundary-free microstructure with moderate ionic conductivity (10<sup>-7</sup> S cm<sup>-1</sup>) and high electronic insulation (10<sup>-14</sup> S cm<sup>-1</sup>), which in the form of thin coatings can offer resistance to lithium dendrite growth. We explore the electrochemical properties and applications of aLLZO ultrathin films prepared by sputtering deposition. The defect-free and conformal nature of the films enables microbatteries with an electrolyte thickness as low as 70 nm, which withstand charge-discharge at 0.2 mA cm<sup>-2</sup> for over 500 cycles. In Li/aLLZO/Li symmetric cells, plating-stripping at current densities up to 3.2 mA cm<sup>-2</sup> shows no signs of lithium penetration. Finally, we show that the application of aLLZO as a coating on LLZO ceramic pellets significantly impedes the formation of Li dendrites.


2020 ◽  
Author(s):  
Jordi Sastre ◽  
Moritz H. Futscher ◽  
Lea Pompizi ◽  
Abdessalem Aribia ◽  
Agnieszka Priebe ◽  
...  

Lithium garnet Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) electrolyte is a potential candidate for the development of solid-state batteries with lithium metal as high-capacity anode. But ceramic LLZO in the form of pellets or polycrystalline films can still suffer from lithium dendrite penetration because of surface and bulk inhomogeneities and grain boundaries with non-negligible electronic conductivity. In contrast, the amorphous phase of LLZO (aLLZO) possesses a grain-boundary-free microstructure with moderate ionic conductivity (10<sup>-7</sup> S cm<sup>-1</sup>) and high electronic insulation (10<sup>-14</sup> S cm<sup>-1</sup>), which in the form of thin coatings can offer resistance to lithium dendrite growth. We explore the electrochemical properties and applications of aLLZO ultrathin films prepared by sputtering deposition. The defect-free and conformal nature of the films enables microbatteries with an electrolyte thickness as low as 70 nm, which withstand charge-discharge at 0.2 mA cm<sup>-2</sup> for over 500 cycles. In Li/aLLZO/Li symmetric cells, plating-stripping at current densities up to 3.2 mA cm<sup>-2</sup> shows no signs of lithium penetration. Finally, we show that the application of aLLZO as a coating on LLZO ceramic pellets significantly impedes the formation of Li dendrites.


2014 ◽  
Vol 510 ◽  
pp. 33-38 ◽  
Author(s):  
F.W. Badrudin ◽  
M.S.A. Rasiman ◽  
M.F.M. Taib ◽  
N.H. Hussin ◽  
O.H. Hassan ◽  
...  

Structural and electronic properties of a new fluorine-free cathode material of polyanionichydroxysulfates, LiFeSO4OH withcaminitestructure are studied using first principles density functional theory. From the calculated result, it reveals that antiferromagnetic configuration is more stable compared to ferromagnetic and non-magnetic configuration. Meanwhile, the density of state calculation divulges that this material exhibited large d-d type of band gap and would behave as a Mott-Hubbard insulator. Thus, this behaviour can lead to poor electronic conductivity.


2021 ◽  
Author(s):  
Jordi Sastre ◽  
Moritz Futscher ◽  
Lea Pompizi ◽  
Abdessalem Aribia ◽  
Agnieszka Priebe ◽  
...  

Abstract Lithium metal dendrites have become a roadblock in the realization of next-generation solid-state batteries with lithium metal as high-capacity anode. The presence of surface and bulk inhomogeneities with non-negligible electronic conductivity in crystalline electrolytes such as the lithium garnet Li7La3Zr2O12 (LLZO) facilitates the growth of lithium filaments, posing a critical safety risk. Here we explore the amorphous phase of LLZO (aLLZO) as a lithium dendrite shield owing to its grain-boundary-free microstructure, stability against metallic lithium, and high electronic insulation. We demonstrate that by tuning the lithium stoichiometry in sputtered aLLZO films, the ionic conductivity can be increased up to 10-7 S cm-1 while retaining an ultralow electronic conductivity of 10-14 S cm-1. In Li/aLLZO/Li symmetric cells, plating-stripping results in no degradation of the films and current densities up to 3.2 mA cm-2 can be applied with no signs of lithium penetration. The defect-free and conformal nature of the films enables microbatteries with an electrolyte thickness as low as 70 nm, which withstand charge-discharge at 0.2 mA cm-2 for over 500 cycles. Finally, we demonstrate that the application of aLLZO as a coating on crystalline LLZO lowers the interface resistance and significantly impedes the formation of lithium dendrites, increasing the critical current density of a symmetric cell up to 1.3 mA cm-2 at room temperature and without external pressure. The effectiveness of the amorphous Li-La-Zr-O as lithium dendrite blocking layer can accelerate the development of more powerful and safer solid-state batteries.


Author(s):  
Shijun Tang ◽  
Gui-Wei Chen ◽  
Fucheng Ren ◽  
Hongchun Wang ◽  
Wu Yang ◽  
...  

The electronic conductivity of solid electrolytes, which plays an important role in inducing Li dendrite deposition, is a key obstacle to the practical application of Li metal to all-solid-state lithium...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajesh Pathak ◽  
Ke Chen ◽  
Ashim Gurung ◽  
Khan Mamun Reza ◽  
Behzad Bahrami ◽  
...  

AbstractLithium metal anodes have attracted extensive attention owing to their high theoretical specific capacity. However, the notorious reactivity of lithium prevents their practical applications, as evidenced by the undesired lithium dendrite growth and unstable solid electrolyte interphase formation. Here, we develop a facile, cost-effective and one-step approach to create an artificial lithium metal/electrolyte interphase by treating the lithium anode with a tin-containing electrolyte. As a result, an artificial solid electrolyte interphase composed of lithium fluoride, tin, and the tin-lithium alloy is formed, which not only ensures fast lithium-ion diffusion and suppresses lithium dendrite growth but also brings a synergistic effect of storing lithium via a reversible tin-lithium alloy formation and enabling lithium plating underneath it. With such an artificial solid electrolyte interphase, lithium symmetrical cells show outstanding plating/stripping cycles, and the full cell exhibits remarkably better cycling stability and capacity retention as well as capacity utilization at high rates compared to bare lithium.


Sign in / Sign up

Export Citation Format

Share Document