lithium dendrite
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 129)

H-INDEX

35
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Zhenhua Sun ◽  
Ru Xiao ◽  
Shan Yang ◽  
Tong Yu ◽  
Tianzhao Hu ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mingqiang Wang ◽  
Ahmet E. Emre ◽  
Ji-Young Kim ◽  
Yiting Huang ◽  
Li Liu ◽  
...  

AbstractLithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges. Replicating the fibrous structure of cartilage, multifactorial engineering of ion-selective mechanical, and thermal properties becomes possible. LPS adsorption on ANF surface creates a layer of negative charge on nanoscale pores blocking LPS transport. The batteries using cartilage-like bioinspired ANF membranes exhibited a close-to-theoretical-maximum capacity of 1268 mAh g−1, up to 3500+ cycle life, and up to 3C discharge rates. Essential for safety, the high thermal resilience of ANFs enables operation at temperatures up to 80 °C. The simplicity of synthesis and recyclability of ANFs open the door for engineering high-performance materials for numerous energy technologies.


Author(s):  
Hui Zhang ◽  
Yabing Qi

Lithium metal batteries are the promising candidates for meeting the increasing demand of next-generation energy storage devices with high energy density, however, the problems of lithium dendrite and unstable solid...


Author(s):  
Tong Gao ◽  
Ziwei Qian ◽  
Hongbo Chen ◽  
Reza Shahbazian-Yassar ◽  
Issei Nakamura

We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts for the effect of the physical properties of small ions such as inorganic...


2021 ◽  
Vol 30 (4) ◽  
pp. 34-35
Author(s):  
Sathish Rajendran

Understanding lithium dendrite propagation in solid-state electrolytes requires highly advanced techniques due to the challenges arising from the lack of characterization techniques to visualize the interior of a solid. In this work, a high-pressure in-situ cell was made to monitor the dynamic changes occurring within an All-Solid-State-Battery under cycling using multiple characterization techniques.


2021 ◽  
Vol 515 ◽  
pp. 230608
Author(s):  
Li Sheng ◽  
Zonglong Li ◽  
Chou-Hung Hsueh ◽  
Ling Liu ◽  
Jianlong Wang ◽  
...  
Keyword(s):  

Rare Metals ◽  
2021 ◽  
Author(s):  
Wei-Wei Han ◽  
Ryanda Enggar Anugrah Ardhi ◽  
Gui-Cheng Liu

Author(s):  
Linghong Xu ◽  
Zhihao Yu ◽  
Junrong Zheng

Abstract Lithium metal is a promising anode utilized in cutting-edge high-energy batteries owing to the low density, low electrochemical potential, and super high theoretical capacity. Unfortunately, continuous uncontrollable lithium dendrite growth and ‘dead’ lithium result in capacity decay, low coulombic efficiency, and short circuit, severely hindering the practical utilization of lithium anode. Herein, we propose a three-dimensional porous lithiophilic current collector for lithium storage. The conductive 3D structure constructed by carbon fiber (CF) can well accommodate the deposited lithium, eliminating volume change between the lithium depositing/stripping process. Moreover, the polydopamine (PDA) coating on the CF surface possesses a large number of polar groups, which can homogenize Li+ ions distribution and apply as the sites for lithium deposition, decreasing nucleation overpotential. As a result, under the 1 mA cm−2 current density, the PDA coated CF (PDA@CF) electrode exhibits high CE (∼98%) for 1000 cycles. Galvanostatic measurements demonstrate that the Li anode using PDA@CF achieves 1000 h cycling life under 1 mA cm−2 with a low overpotential (<15 mV). The LiFePO4 full cell shows enhanced rate performance and stable long-term cycling.


Sign in / Sign up

Export Citation Format

Share Document