density of state
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 56)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Shengli Zhang ◽  
Hengze Qu ◽  
Jiang Cao ◽  
Yangyang Wang ◽  
Shengyuan A. Yang ◽  
...  

Author(s):  
Liangbo Huang ◽  
Jian Tian ◽  
Lei Liu ◽  
Ruxiao Di ◽  
Zihao Zhu

In this paper, the properties of two-dimensional (2D) gallium nitride (GaN) photocathodes with a uniform doping and variable doping structure are studied by using Mg as a doping element based on first principles. The stability, bandstructure, work function, density of state and optical properties of the GaN bilayer and GaN trilayer in two-doped ways are investigated. The results show that formation energy of variable doping structure is less than that of the uniform doping structure, which means that the variable doping structure is more stable. At the same time, the formation energy increases with increase of layers. The pristine GaN bilayer has an indirect bandgap, while the doped GaN bilayer transforms into a direct bandgap. The impurity levels appear in a forbidden band of doped GaN trilayers, which is favorable for electron transition. The results of work function reveal that variable doping structure has lower vacuum barriers and more electron escape numbers, which proves that it can improve the quantum efficiency of photocathodes. Finally, the analysis of optical properties shows that the uniform doping structure has better optical properties than that of the variable doping structure.


Author(s):  
jinjin wang ◽  
Tianfeng Ye ◽  
Yanqun Shao ◽  
zhiyuan lu ◽  
yuting lin ◽  
...  

Abstract RuO2 is well known to be an active and expensive metal oxide. In the paper, ZnCo2O4/RuO2 nanocomposites had been synthesized by simple hydrothermal, impregnation and calcination methods. Due to the multifunctional bridge structure, RuO2 could not only effectively inhibit the volume change of ZnCo2O4 in long-term work but also provide more redox active sites. The forbidden bandwidth was reduced and the conductivity was improved after doping RuO2. Comparing with ZnCo2O4, the density of state of ZnCo2O4/RuO2 tended to a higher energy level. ZnCo2O4/3wt% RuO2 electrode exhibited the excellent specific capacitance (1346.56 F g−1), high rate capability and cyclic stability in 6 M KOH aqueous solution. For the first time, the electrochemical performance of ZnCo2O4/RuO2//IrO2-ZnO ASC has been evaluated in two-electrode configurations. The supercapacitor exhibited an excellent energy density of 40.89 W h kg-1 at the power density of 740 W kg-1 and a high capacitance retention of 87.5 % even after 7000 cycles at a scanning rate of 100 mV s-1. The ZnCo2O4/RuO2 was a promising electrode material for supercapacitors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuanbing Wen ◽  
Pengcheng Wang ◽  
Xinying Ding ◽  
Xiaobo Feng ◽  
Chen Qing

Oxygen vacancy has been suggested to play a role in the electrochemical ability of NiMoO4. The band structure and density of state of NiMoO4 bulks with different concentrations of oxygen vacancy were investigated by the first-principles calculation. Original NiMoO4 shows semiconductive properties with a direct band gap of 0.136 eV. When one to three oxygen vacancies were introduced in the NiMoO4 supercell, the band structure of NiMoO4 transforms to metallic properties, and oxygen vacancies formation energy increases with the increased number of oxygen vacancies. The oxygen vacancies in NiMoO4 lead to the increased electron localization of Ni 3d and Mo 3d state nearby the Fermi level, resulting in higher concentration of carriers in NiMoO4 and thus increase in its electrical conductivity. The results demonstrate that introducing oxygen vacancies can improve the conductive property of NiMoO4.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qianqian Lv ◽  
Pei-Hao Fu ◽  
Xiang-Long Yu ◽  
Jun-Feng Liu ◽  
Jiansheng Wu

AbstractWe propose a highly tunable $$100\%$$ 100 % spin-polarized current generated in a spintronic device based on a Dirac semimetal (DSM) under a magnetic field, which can be achieved merely by controlling electrical parameters, i.e. the gate voltage, the chemical potential in the lead and the coupling strength between the leads and the DSM. These parameters are all related to the special properties of a semimetal. The spin polarized current generated by gate voltage is guaranteed by its semimetallic feature, because of which the density of state vanishes near Dirac nodes. The barrier controlled current results from the different distance of Weyl nodes generated by the Zeeman field. And the coupling strength controlled spin polarized current originates from the surface Fermi arcs. This DSM-based spintronic device is expected to be realized in $$\hbox {Cd}_{3}\hbox {As}_{2}$$ Cd 3 As 2 experimentally.


2021 ◽  
Author(s):  
Jin Yang ◽  
Wen Liu ◽  
Qiang Hu ◽  
Shuhuan Hu ◽  
Zonglin Chi ◽  
...  

The remarkable biocompatibility and supreme physical properties of nanostructured TiO2 have promised itself a strong future for biomedical applications. The present study reported a theoretical study on the adsorption of rutile TiO2 (110) nanosheet for DNA nucleobases using first-principles calculations. The calculations of the binding energy and work function demonstrate that the TiO2 nanosheet has remarkable adsorption strength to the DNA nucleobases, being more than 20 times larger than that of graphene and its derivatives. Further electronic band structure and density of state calculations elucidate the interaction mechanisms, which originate from dramatically reduced energy levels and strong hybridization of the 2p orbital of C, N and/or O with 3d orbital of Ti atoms near the Fermi level. The study directs a promising material at applications in DNA sensors and sequencers.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3507
Author(s):  
Zhen Shi ◽  
Sheng-Yuan Xia

The scavenging and detection of sulfur hexafluoride (SF6) decomposition products (SO2, H2S, SO2F2, SOF2) critically matters to the stable and safe operation of gas-insulated switchgear (GIS) equipment. In this paper, the Rh-doped nitrogen vacancy boron nitride monolayer (Rh-VNBN) is proposed as a gas scavenger and sensor for the above products. The computational processes are applied to investigate the configurations, adsorption and sensing processes, and electronic properties in the gas/Rh-VNBN systems based on the first-principle calculations. The binding energy (Eb) of the Rh-VNBN reaches −8.437 eV, while the adsorption energy (Ead) and band gap (BG) indicate that Rh-VNBN exhibits outstanding adsorption and sensing capabilities. The density of state (DOS) analysis further explains the mechanisms of adsorption and sensing, demonstrating the potential use of Rh-VNBN in sensors and scavengers of SF6 decomposition products. This study is meaningful as it explores new gas scavengers and sensors of SF6 decomposition products to allow the operational status assessment of GIS equipment.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3518
Author(s):  
Hideki Arimatsu ◽  
Yuki Osada ◽  
Ryo Takagi ◽  
Takuya Fujima

PEDOT:Tos, a PSS-free PEDOT-based material, is a promising possible organic thermoelectric material for a practical conversion module because the material reportedly has a large power factor. However, since PEDOT:Tos is mainly reported to be a p-type thermoelectric material, the development of PSS-free PEDOT with n-type thermoelectric properties is desirable. Thus, in order to search for PSS-free PEDOT with n-type thermoelectric properties, we investigated the doping concentration of PTSA dependence of the thermoelectric property using the first-principle calculation. The band structure and the density of state indicated that the n-type thermal electromotive force was attributed to the electrons’ large effective mass. Such electrons were produced thanks to the binding of the dopant PTSA to the benzene ring. The contribution of the electron to the Seebeck coefficient increased with increasing PTSA doping concentrations.


Sign in / Sign up

Export Citation Format

Share Document