scholarly journals Two Faces of the Two Phase Thermodynamic Model

Author(s):  
Ádám Madarász ◽  
Andrea Hamza ◽  
Dávid Ferenc ◽  
Imre Bakó

<div>The quantum harmonic model and the two-phase thermodynamics method (2PT) are widely used to obtain quantum corrected properties such as isobaric heat capacities or molar entropies. 2PT heat capacities were calculated inconsistently in the literature, and the excellent correlations are due to error cancellation for organic liquids. We reanalyzed the performance of different quantum corrections on the heat capacities of common organic solvents against experimental data. The accuracy of the computations was also assessed with the determination of the self-diffusion coefficients.</div><div><br></div>

2021 ◽  
Author(s):  
Ádám Madarász ◽  
Andrea Hamza ◽  
Dávid Ferenc ◽  
Imre Bakó

<div>The quantum harmonic model and the two-phase thermodynamics method (2PT) are widely used to obtain quantum corrected properties such as isobaric heat capacities or molar entropies. 2PT heat capacities were calculated inconsistently in the literature, and the excellent correlations are due to error cancellation for organic liquids. We reanalyzed the performance of different quantum corrections on the heat capacities of common organic solvents against experimental data. The accuracy of the computations was also assessed with the determination of the self-diffusion coefficients.</div><div><br></div>


2021 ◽  
Author(s):  
Ádám Madarász ◽  
Andrea Hamza ◽  
Dávid Ferenc ◽  
Imre Bakó

<div>The quantum harmonic model and the two-phase thermodynamics method (2PT) are widely used to obtain quantum corrected properties such as isobaric heat capacities or molar entropies. 2PT heat capacities were calculated inconsistently in the literature. For water the classical heat capacity was also considered, but for organic liquids it was omitted. We reanalyzed the performance of different quantum corrections on the heat capacities of common organic solvents against experimental data. We have pointed out serious flaws in previous 2PT studies. The vibrational density of states was calculated incorrectly causing 39 \% relative error in diffusion coefficients and 45 \% error in the 2PT heat capacities. The wrong conversion of isobaric isochoric heat capacity also caused about 40 \% error but in the other direction. We have introduced the concept of anharmonic correction which is simply the deviation of the classical heat capacity from that of the harmonic oscillator model. This anharmonic contribution is around +30-40 J/mol/K for water depending on the water model and -8-10 J/mol/K for hydrocarbons and halocarbons. AC is unrealistically large, +40 J/K/mol for alcohols and amines indicating some deficiency of the OPLS force field. The accuracy of the computations was also assessed with the determination of the self-diffusion coefficients.<br></div>


2021 ◽  
Author(s):  
Ádám Madarász ◽  
Andrea Hamza ◽  
Dávid Ferenc ◽  
Imre Bakó

The quantum harmonic model and the two-phase thermodynamics method (2PT) are widely used to obtain quantum corrected properties such as isobaric heat capacities or molar entropies. 2PT heat capacities were calculated inconsistently in the literature. For water the classical heat capacity was also considered, but for organic liquids it was omitted. We reanalyzed the performance of different quantum corrections on the heat capacities of common organic solvents against experimental data. We have pointed out serious flaws in previous 2PT studies. The vibrational density of states was calculated incorrectly causing 39 % relative error in diffusion coefficients and 45 % error in the 2PT heat capacities. The wrong conversion of isobaric isochoric heat capacity also caused about 40 % error but in the other direction. We have introduced the concept of anharmonic correction (AC) which is simply the deviation of the classical heat capacity from that of the harmonic oscillator model. This anharmonic contribution is around +30-40 J/mol/K for water depending on the water model and -8-10 J/mol/K for hydrocarbons and halocarbons. AC is unrealistically large, +40 J/K/mol for alcohols and amines indicating some deficiency of the OPLS force field. The accuracy of the computations was also assessed with the determination of the self-diffusion coefficients.


JOM ◽  
1954 ◽  
Vol 6 (5) ◽  
pp. 616-619 ◽  
Author(s):  
Harry C. Gatos ◽  
Anthony D. Kurtz

1963 ◽  
Vol 43 (1) ◽  
pp. 44-51 ◽  
Author(s):  
A. S. Patil ◽  
K. M. King ◽  
M. H. Miller

A non steady-state method was used for the laboratory determination of the self-diffusion coefficient of rubidium in loam soil at soil moisture tensions of.16, 1.17, and 15 atmospheres. Soil volumes (half-cells) 1.0 centimeter long and 2.5 centimeters in diameter, containing rubidium labelled with Rb86, were placed in contact with similar but unlabelled half-cells. After varying time periods, the half-cells were separated and extracted with 1N NH4Ac, and the transfer of Rb86 determined.The diffusion followed the simple theory. The self-diffusion coefficients for rubidium at 25 °C. were as follows: 16 × 10−4 cm.2/hr. at 0.16 atm.; 4.9 × 10−4 cm.2/hr. at 1.17 atm.; 2.3 × 10−4 cm.2/hr. at 15 atm. In free solution, the self-diffusion coefficient is 7.2 × 10−2 cm.2/hr.


Author(s):  
Victor P. Arkhipov ◽  
Natalia A. Kuzina ◽  
Andrei Filippov

AbstractAggregation numbers were calculated based on measurements of the self-diffusion coefficients, the effective hydrodynamic radii of micelles and aggregates of oxyethylated alkylphenols in aqueous solutions. On the assumption that the radii of spherical micelles are equal to the lengths of fully extended neonol molecules, the limiting values of aggregation numbers corresponding to spherically shaped neonol micelles were calculated. The concentration and temperature ranges under which spherical micelles of neonols are formed were determined.


1989 ◽  
Vol 39 (8) ◽  
pp. 5025-5034 ◽  
Author(s):  
G. Vogl ◽  
W. Petry ◽  
Th. Flottmann ◽  
A. Heiming

1974 ◽  
Vol 14 (6) ◽  
pp. 915-918
Author(s):  
A. M. Sazonov ◽  
V. M. Olevskii ◽  
A. B. Porai-Koshits ◽  
V. N. Skobolev ◽  
G. A. Shmuilovich

2012 ◽  
Vol 1 (6) ◽  
pp. 334-346 ◽  
Author(s):  
Rafik Besbes ◽  
Noureddine Ouerfelli ◽  
Manef Abderabba ◽  
Patric Lindqvist-Reis ◽  
Habib Latrous

Sign in / Sign up

Export Citation Format

Share Document