scholarly journals Multi-Catalytic Approach to One-Pot Stereoselective Synthesis of Secondary Benzylic Alcohols

Author(s):  
Alessandra Casnati ◽  
Dawid Lichosyt ◽  
Bruno Lainer ◽  
Lukas Veth ◽  
Pawel Dydio

One-pot multi-step procedures bear the potential to rapidly build up molecular complexity while avoiding the wasteful and costly isolations and purifications of consecutive intermediates. Here we report multi-catalytic protocols that convert alkenes, unsaturated aliphatic alcohols, and aryl boronic acids into secondary benzylic alcohols with high stereoselectivities under sequential catalysis that integrates alkene cross-metathesis, isomerization, and nucleophilic addition. Because each transformation of the sequence is executed by an independent catalyst, without any catalytic cross-reactivity, allylic alcohols bearing a prochiral double bond can be converted to any stereoisomer of the product with high stereoselectivity (>98:2 er and >20:1 dr). Overall, with the aid of up to four catalysts operating in a single vessel, the protocols directly convert simple starting materials into a range of value-added products with high stereocontrol and excellent material efficiency, demonstrating both the efficacy and the advantages of the one-pot synthesis employing multiple transition-metal catalysts.

2021 ◽  
Author(s):  
Alessandra Casnati ◽  
Dawid Lichosyt ◽  
Bruno Lainer ◽  
Lukas Veth ◽  
Pawel Dydio

One-pot multi-step procedures bear the potential to rapidly build up molecular complexity while avoiding the wasteful and costly isolations and purifications of consecutive intermediates. Here we report multi-catalytic protocols that convert alkenes, unsaturated aliphatic alcohols, and aryl boronic acids into secondary benzylic alcohols with high stereoselectivities under sequential catalysis that integrates alkene cross-metathesis, isomerization, and nucleophilic addition. Because each transformation of the sequence is executed by an independent catalyst, without any catalytic cross-reactivity, allylic alcohols bearing a prochiral double bond can be converted to any stereoisomer of the product with high stereoselectivity (>98:2 er and >20:1 dr). Overall, with the aid of up to four catalysts operating in a single vessel, the protocols directly convert simple starting materials into a range of value-added products with high stereocontrol and excellent material efficiency, demonstrating both the efficacy and the advantages of the one-pot synthesis employing multiple transition-metal catalysts.


Synthesis ◽  
2021 ◽  
Author(s):  
Santanu Ghora ◽  
Chinnabattigalla Sreenivasulu ◽  
Gedu Satyanarayana

AbstractAn efficient, one-pot, domino synthesis of quinolines via the coupling of iodoanilines with allylic alcohols facilitated by palladium catalysis is described. The overall synthetic process involves an intermolecular Heck coupling between 2-iodoanilines and allylic alcohols, intramolecular condensation of in situ generated ketones with an internal amine functional group, and a dehydrogenation sequence. Notably, this protocol occurs in water as a green solvent. Significantly, the method exhibits broad substrate scope and is applied for the synthesis of deuterated quinolines through a deuterium-exchange process.


2022 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Malinee Sriariyanun ◽  
Nichaphat Kitiborwornkul ◽  
Prapakorn Tantayotai ◽  
Kittipong Rattanaporn ◽  
Pau-Loke Show

Ionic liquid (IL) pretreatment of lignocellulose is an efficient method for the enhancement of enzymatic saccharification. However, the remaining residues of ILs deactivate cellulase, therefore making intensive biomass washing after pretreatment necessary. This study aimed to develop the one-pot process combining IL pretreatment and enzymatic saccharification by using low-toxic choline acetate ([Ch][OAc]) and IL-tolerant bacterial cellulases. Crude cellulases produced from saline soil inhabited Bacillus sp. CBD2 and Brevibacillus sp. CBD3 were tested under the influence of 0.5–2.0 M [Ch][OAc], which showed that their activities retained at more than 95%. However, [Ch][OAc] had toxicity to CBD2 and CBD3 cultures, in which only 32.85% and 12.88% were alive at 0.5 M [Ch][OAc]. Based on the specific enzyme activities, the sugar amounts produced from one-pot processes using 1 mg of CBD2 and CBD3 were higher than that of Celluclast 1.5 L by 2.0 and 4.5 times, respectively, suggesting their potential for further application in the biorefining process of value-added products.


Sign in / Sign up

Export Citation Format

Share Document