transition metal catalysts
Recently Published Documents


TOTAL DOCUMENTS

913
(FIVE YEARS 222)

H-INDEX

74
(FIVE YEARS 11)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yujing Guo ◽  
Chao Pei ◽  
Rene M. Koenigs

AbstractNitrene transfer reactions represent one of the key reactions to rapidly construct new carbon-nitrogen bonds and typically require transition metal catalysts to control the reactivity of the pivotal nitrene intermediate. Herein, we report on the application of iminoiodinanes in amination reactions under visible light photochemical conditions. While a triplet nitrene can be accessed under catalyst-free conditions, the use of a suitable photosensitizer allows the access of a nitrene radical anion. Computational and mechanistic studies rationalize the access and reactivity of triplet nitrene and nitrene radical anion and allow the direct comparison of both amination reagents. We conclude with applications of both reagents in organic synthesis and showcase their reactivity in the reaction with olefins, which underline their markedly distinct reactivity. Both reagents can be accessed under mild reaction conditions at room temperature without the necessity to exclude moisture or air, which renders these metal-free, photochemical amination reactions highly practical.


2022 ◽  
Author(s):  
Saumya Verma ◽  
Asha Joshi ◽  
Saroj Ranjan De ◽  
Jawahar Lal Jat

Epoxidation of alkenes is one of the most explored reactions in organic synthesis because of the accessibilities of diverse important compounds from epoxides. Several transition-metal-catalysts in combination with oxidizing agents...


2021 ◽  
Vol 623 ◽  
pp. 413343
Author(s):  
Qiang Huang ◽  
Pengru Huang ◽  
Zhihai Sun ◽  
Ying Zhang ◽  
Yongpeng Xia ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Saurabh Vinod Parmar ◽  
Vidya Avasare ◽  
Sourav Pal

Carbon dioxide utilization is necessary to reduce carbon footprint and also to synthesize value-added chemicals. The transition metal pincer complexes are attractive catalysts for the hydrogenation of carbon dioxide to formic acid. There is a need to understand the factors affecting the catalytic performance of these pincer complexes through a structure–activity relationship study using computational methods. It is a well-established fact that aromatic functionalities offer stability and selectivity to transition metal catalysts. However, their impact on the performance of the catalysts is lesser known in the case of metal pincer complexes. Hence, it is necessary to investigate the catalytic performance of Mn(I)NNN pincer complexes with variably activated aromatic functionalities. In this context, 15 catalysts are designed by placing different types of aromatic rings at the pincer carbons and two terminal nitrogen of Mn(I)NNN pincer complexes. A benzene moiety, placed at C2–C3 carbons of Mn(I)NNN pincer complex with identical aromatic groups at the terminal nitrogen, is found to be most efficient toward CO2 hydrogenation than the rest of the catalysts. On the other hand, when N,N-dimethyl aniline is placed at C2–C3 carbons of Mn(I)NNN pincer complexes, then the catalytic performance is significantly decreased. Thus, the present study unravels the impact of aromatic groups in Mn(I)NNN pincer complexes toward the catalytic hydrogenation of carbon dioxide.


2021 ◽  
Author(s):  
Hideto Miyabe

The N-heterocyclic carbenes (NHCs) open the new field of organocatalysis, leading to the dramatic progress on the cooperative NHC catalysis with transition-metal catalysts or photocatalysts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Long ◽  
Chong Huang ◽  
Yun-Tao Zheng ◽  
Zhao-Yu Li ◽  
Liang-Hua Jie ◽  
...  

AbstractThe development of efficient and sustainable methods for carbon-phosphorus bond formation is of great importance due to the wide application of organophosphorus compounds in chemistry, material sciences and biology. Previous C–H phosphorylation reactions under nonelectrochemical or electrochemical conditions require directing groups, transition metal catalysts, or chemical oxidants and suffer from limited scope. Herein we disclose a catalyst- and external oxidant-free, electrochemical C–H phosphorylation reaction of arenes in continuous flow for the synthesis of aryl phosphorus compounds. The C–P bond is formed through the reaction of arenes with anodically generated P-radical cations, a class of reactive intermediates remained unexplored for synthesis despite intensive studies of P-radicals. The high reactivity of the P-radical cations coupled with the mild conditions of the electrosynthesis ensures not only efficient reactions of arenes of diverse electronic properties but also selective late-stage functionalization of complex natural products and bioactive compounds. The synthetic utility of the electrochemical method is further demonstrated by the continuous production of 55.0 grams of one of the phosphonate products.


2021 ◽  
Author(s):  
Huadong Wang ◽  
Yuliang Xu ◽  
Yizhou Yang ◽  
Yizhen Liu ◽  
Zhen Li

Abstract The hydrogenolysis of C–C bonds is among one of the most important processes in the petroleum industry which has been considered as a viable way to recycle waste polyolefins. These transformations typically rely on heterogeneous catalysts and take place at high temperature and high pressure with limited selectivity. Employing homogenous transition metal catalysts, while allowing the hydrogenolysis of C–C bonds to proceed under much milder conditions, is only suitable for substrates containing strained C–C bonds or directing groups. Here we report that a borenium complex can catalyze the selective hydrogenolysis of unstrained C(aryl)–C(alkyl) bonds of alkylarenes at ambient temperature, affording the corresponding alkanes and arenes. This method does not require the assistance of directing groups, and tolerates a range of functional groups. Mechanistic studies suggest a reaction pathway that involves a synergistic activation of dihydrogen by the borenium complex and alkylarenes, followed by retro-Friedel-Crafts reaction to cleave the C(aryl)–C(alkyl) bonds. The synthetic utility of this protocol was demonstrated by the conversion of post-consumer polystyrene into valuable benzene and phenylalkanes with mass recovery above 90%, thus opening up new avenues for the recycling of aromatic chemicals from waste plastics.


Sign in / Sign up

Export Citation Format

Share Document