lewis acids
Recently Published Documents


TOTAL DOCUMENTS

2518
(FIVE YEARS 272)

H-INDEX

85
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Riddhi Golwankar ◽  
Amit Kumar ◽  
Victor Day ◽  
James Blakemore

Incorporation of redox-inactive metals into redox-active complexes and catalysts attracts attention for engendering new reactivity modes, but this strategy has not been extensively investigated beyond the first-row of the transition metals. Here, the isolation and characterization of the first series of heterobimetallic complexes of palladium with mono-, di-, and tri-valent redox-inactive metal ions are reported. A Reinhoudt-type heteroditopic ligand with a salen-derived [N2,O2] binding site for Pd and a crown-ether-derived [O6] site has been used to prepare isolable adducts of the Lewis acidic redox-inactive metal ions (Mn+). Comprehensive data from single-crystal X-ray diffraction analysis reveal distinctive trends in the structural properties of the heterobimetallic species, including an uncommon dependence of the Pd•••M distance on Lewis acidity. The reorganization energy associated with reduction of the heterobimetallic species is strongly modulated by Lewis acidity, with the slowest heterogeneous electron transfer kinetics associated with the strongest incorporated Lewis acids. This hitherto unexplored reorganization energy penalty for electron transfer contrasts with prior thermodynamic studies, revealing that kinetic parameters should be considered in studies of reactivity involving heterobimetallic species.


2022 ◽  
Author(s):  
Fabian Bauch ◽  
Chuanding Dong ◽  
Stefan Schumacher

Lewis acid doping of organic semiconductors (OSCs) opens up new ways of p-type doping and has recently become of significant interest. As for the mechanistic understanding, it was recently proposed that upon protonation of the OSC backbone, electron transfer occurs between the protonated polymer chain and a neutral chain nearby, inducing a positive charge carrier in the latter [Nat. Mater. 18, 1327 (2019)]. To further clarify the underlying microscopic processes on a molecular level, in the present work, we analyze the influence of protons on the electronic properties of the widely used PCPDT–BT copolymer. We find that single protonation of the polymer chain leads to the formation of a polaron coupled to the position of the proton. Upon protonation of the same chain with a second proton, an intrachain electron transfer occurs, leaving behind a polaron largely decoupled from the proton positions. We also observe the possibility of an interchain electron transfer from a neutral chain to a double protonated chain in agreement with the mechanism recently proposed in the literature. The simulated vertical excitation spectra for an ensemble of protonated species with different amounts of protons enable a detailed interpretation of experimental observation on PCPDT–BT doped with the Lewis acid BCF. Our results further suggest that multi-protonation plays an important role for completing the mechanistic picture of Lewis acid doping of OSCs.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Valeria Nori ◽  
Fabio Pesciaioli ◽  
Arianna Sinibaldi ◽  
Giuliana Giorgianni ◽  
Armando Carlone

In the last two decades, boron-based catalysis has been gaining increasing traction in the field of organic synthesis. The use of halogenated triarylboranes as main group Lewis acid catalysts is an attractive strategy. It has been applied in a growing number of transformations over the years, where they may perform comparably or even better than the gold standard catalysts. This review discusses methods of borane synthesis and cutting-edge boron-based Lewis acid catalysis, focusing especially on tris(pentafluorophenyl)-borane [B(C6F5)3], and other halogenated triarylboranes, highlighting how boron Lewis acids employed as catalysts can unlock a plethora of unprecedented chemical transformations or improve the efficiency of existing reactions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jens Rudlof ◽  
Beate Neumann ◽  
Hans-Georg Stammler ◽  
Norbert W. Mitzel

Abstract Based on the previously described bifunctional Lewis acid with a functional distance of the boron functions of 4.918(2) Å, the development of a further bifunctional, boron-containing Lewis acid with a wider functional distance is demonstrated. Again, a stannylated precursor was used and the Lewis-acidic boron functions were introduced by means of tin-boron exchange. The general suitability of this class of compounds for the formation of host-guest-complexes is demonstrated by NMR experiments and by solid-state structures using pyridine and TMPD (N 1,N 1,N 4,N 4-tetramethylbenzene-1,4-diamine) as Lewis basic guests. The influence of traces of moisture on the boron-containing, bifunctional Lewis acids was investigated by the structure elucidation of a decomposition product.


Author(s):  
Jens Rudlof ◽  
Timo Glodde ◽  
Andreas Mix ◽  
Beate Neumann ◽  
Georg Stammler ◽  
...  
Keyword(s):  

Author(s):  
Pier Giorgio Cozzi ◽  
Andrea Gualandi ◽  
Luca Mengozzi ◽  
Elisabetta Manoni ◽  
Claire Margaret Wilson

Author(s):  
J. Haydée Merino ◽  
Jesús Bernad ◽  
Xavier Solans-Monfort

AbstractLewis acids increase the catalytic activity of classical heterogeneous catalysts and molecular d0 tungsten oxo alkylidenes in a variety of olefin metathesis processes. The formation of labile adducts between the metal complex and the Lewis acid has been observed experimentally and suggested to be involved in the catalyst activity increase. In this contribution, DFT (M06) calculations have been performed to determine the role of Lewis acids on catalyst activity, Z-/E- selectivity and stability by comparing three W(E)(CHR)(2,5-dimethylpyrrolide)(O-2,6-dimesithylphenoxide) (E = oxo, imido or oxo-Lewis acid adduct) alkylidenes. Results show that the formation of the alkylidene—Lewis acid adducts influences the reactivity of tungsten oxo alkylidenes due to both steric and electronic effects. The addition of the Lewis acid on the E group increases its bulkiness and this decreases catalyst Z-selectivity. Moreover, the interaction between the oxo ligand and the Lewis acid decreases the donating ability of the former toward the metal. This is important when the oxo group has either a ligand in trans or in the same plane that is competing for the same metal d orbitals. Therefore, the weakening of oxo donating ability facilitates the cycloaddition and cycloreversion steps and it stabilizes the productive trigonal bipyramid metallacyclobutane isomer. The two factors increase the catalytic activity of the complex. The electron donating tuneability by the coordination of the Lewis acid also applies to catalyst deactivation and particularly the key β-hydride elimination step. In this process, the transition states show a ligand in pseudo trans to the oxo. Therefore, the presence of the Lewis acid decreases the Gibbs energy barrier significantly. Overall, the optimization of the E group donating ability in each step of the reaction makes tungsten oxo alkylidenes more reactive and this applies both for the catalytic activity and catalyst deactivation.


2021 ◽  
Vol 25 ◽  
Author(s):  
Alexis Prieto ◽  
Florian Jaroschik

: In recent years, photoredox catalysis has appeared as a new paradigm for forging a wide range of chemical bonds under mild conditions using abundant reagents. This approach allows many organic transformations through the generation of various radical species, enabling the valorization of non-traditional partners. A continuing interest has been devoted to the discovery of novel radical-generating procedures. Over the last ten years, strategies using rare-earth complexes as either redox-active centers or as redox-neutral Lewis acids have emerged. This review provides an overview of the recent accomplishments made in this field. It especially aims to demonstrate the utility of rare-earth complexes for ensuring photocatalytic transformations and to inspire future developments.


2021 ◽  
Author(s):  
◽  
Anna Louise Win-Mason

<p>The biological activity of azasugars has largely been attributed to their ability to mimic the oxocarbenium ion-like transition state formed during reactions with carbohydrate-processing enzymes and, for this reason, functional and stereochemical modifications of the azasugar scaffold have led to the development of specific and potent glycosidase inhibitors. Given the potential of azasugars as glycosidase inhibitors, we were interested in developing efficient methodology for their synthesis. This thesis highlights synthetic methodology developed to produce amino-imino-hexitols as azasugar scaffolds. Key in the synthesis of the amino-imino-hexitols was the application of a stereoselective Strecker reaction, without the need for chiral Lewis acids or catalysts, and an extension of an I2-mediated carbamate annulation to cyclise functionalised and protected alkenylamines. Sixteen amino-imino-hexitols were synthesized, including ten previously undisclosed substrates with the D-galacto, D-talo, and L-altro configurations. The novel amino-imino-hexitols were then tested for their ability to act as glycosidase inhibitors and substrates of the D-talo configuration showed promising inhibitory effects. Mechanistic considerations of the I2-mediated carbamate annulation are discussed and although the exact annulation mechanism has yet to be determined, experimental studies have revealed that an aziridine is not an intermediate in the reaction. Factors influencing the diastereoselectivity of the carbamate annulation are also explored. Furthermore, an in depth analysis of the high cis-selectivity of the carbamate annulation is investigated using density functional theory to calculate the transition states of iodocyclisations en route to the formation of carbamates. Taken as a whole, the applicability of the carbamate annulation to a variety of alkenylamines and an understanding of the factors controlling the diastereoselectivity of the reaction should make this methodology a valuable addition to the synthetic chemist’s toolbox.</p>


Sign in / Sign up

Export Citation Format

Share Document