saline soil
Recently Published Documents


TOTAL DOCUMENTS

1214
(FIVE YEARS 430)

H-INDEX

44
(FIVE YEARS 8)

Pedosphere ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 283-293
Author(s):  
Hamna SALEEM ◽  
Mahtab AHMAD ◽  
Jamshaid RASHID ◽  
Munir AHMAD ◽  
Mohammad I. AL-WABEL ◽  
...  

2022 ◽  
Vol 177 ◽  
pp. 114472
Author(s):  
Le Zhang ◽  
Lili Mao ◽  
Xiaoyu Yan ◽  
Chengmin Liu ◽  
Xianliang Song ◽  
...  

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Shoule Wang ◽  
Zhenyong Zhao ◽  
Shaoqing Ge ◽  
Ke Zhang ◽  
Changyan Tian ◽  
...  

Halophytes possess the capacity to uptake high levels of salt through physiological processes and their root architecture. Here, we investigated whether halophyte/non-halophyte intercropping in saline soil benefits plant growth and contains root-dialogue between interspecific species. Field and pot experiments were conducted to determine the plant biomasses and salt and nutrient distributions in three suaeda (Suaeda salsa)/maize (Zea mays L.) intercropping systems, set up by non-barrier, nylon-barrier, and plastic-barrier between plant roots. The suaeda/maize intercropping obviously transferred more Na+ to the suaeda root zone and decreased salt and Na+ contents. However, the biomass of the non-barrier-treated maize was significantly lower than that of the nylon and plastic barrier-treated maize. There was lower available N content in the soil of the non-barrier treated groups compared with the plastic barrier-treated groups. In addition, the pH was lower, and the available nutrient content was higher in the nylon barrier, which suggested that rhizospheric processes might occur between the two species. Therefore, we concluded that the suaeda/maize intercropping would be beneficial to the salt removal, but it caused an adverse effect for maize growth due to interspecific competition, and also revealed potential rhizospheric effects through the role of roots. This study provides an effective way for the improvement of saline land.


2022 ◽  
Vol 14 (2) ◽  
pp. 347
Author(s):  
Xiaofang Jiang ◽  
Hanchen Duan ◽  
Jie Liao ◽  
Pinglin Guo ◽  
Cuihua Huang ◽  
...  

Hyperspectral data has attracted considerable attention in recent years due to its high accuracy in monitoring soil salinization. At present, most existing research focuses on the saline soil in a single area without comparative analysis between regions. The regional differences in the hyperspectral characteristics of saline soil are still unclear. Thus, we chose Golmud in the cold–dry Qaidam Basin (QB–G) and Gaotai–Minghua in the relatively warm–dry Hexi Corridor (HC–GM) as the study areas, and used the deep extreme learning machine (DELM) and sine cosine algorithm–Elman (SCA–Elman) to predict soil salinity, and then selected the most suitable algorithm in these two regions. A total of 79 (QB–G) and 86 (HC–GM) soil samples were collected and tested to obtain their electrical conductivity (EC) and corresponding hyperspectral reflectance (R). We utilized the land surface parameters that affect the soil based on Landsat 8 and digital elevation model (DEM) data, selected the variables using the light gradient boosting machine (LightGBM), and built SCA–Elman and DELM from the hyperspectral reflectance data combined with land surface parameters. The results revealed the following: (1) The soil hyperspectral reflectance in QB–G was higher than that in HC–GM. The soils of QB–G are mainly the chloride type and those of HC–GM mainly belong to the sulfate type, having lower reflectance. (2) The accuracies of some of the SCA–Elman and DELM models in QB–G (the highest MAEv, RMSEv, and were 0.09, 0.12 and 0.75, respectively) were higher than those in HC–GM (the highest MAEv, RMSEv, and were 0.10, 0.14 and 0.73, respectively), which has flatter terrain and less obvious surface changes. The surface parameters in QB–G had higher correlation coefficients with EC due to the regular altitude change and cold–dry climate. (3) Most of the SCA–Elman results (the mean in HC-GM and QB-G were 0.62 and 0.60, respectively) in all areas performed better than the DELM results (the mean in HC–GM and QB–G were 0.51 and 0.49, respectively). Therefore, SCA–Elman was more suitable for the soil salinity prediction in HC–GM and QB–G. This can provide a reference for soil salinization monitoring and model selection in the future.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


2022 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Malinee Sriariyanun ◽  
Nichaphat Kitiborwornkul ◽  
Prapakorn Tantayotai ◽  
Kittipong Rattanaporn ◽  
Pau-Loke Show

Ionic liquid (IL) pretreatment of lignocellulose is an efficient method for the enhancement of enzymatic saccharification. However, the remaining residues of ILs deactivate cellulase, therefore making intensive biomass washing after pretreatment necessary. This study aimed to develop the one-pot process combining IL pretreatment and enzymatic saccharification by using low-toxic choline acetate ([Ch][OAc]) and IL-tolerant bacterial cellulases. Crude cellulases produced from saline soil inhabited Bacillus sp. CBD2 and Brevibacillus sp. CBD3 were tested under the influence of 0.5–2.0 M [Ch][OAc], which showed that their activities retained at more than 95%. However, [Ch][OAc] had toxicity to CBD2 and CBD3 cultures, in which only 32.85% and 12.88% were alive at 0.5 M [Ch][OAc]. Based on the specific enzyme activities, the sugar amounts produced from one-pot processes using 1 mg of CBD2 and CBD3 were higher than that of Celluclast 1.5 L by 2.0 and 4.5 times, respectively, suggesting their potential for further application in the biorefining process of value-added products.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Zezhou Guo ◽  
Ruihua Hao ◽  
Qianli Lv ◽  
...  

Aiming to investigate salt-frost heaving rules and the mechanical properties of natural saline soil along the Duku Highway subjected to multiple freezing-thawing cycles, we collected natural saline soil samples from the alluvial-proluvial plain in front of the Dushanzi Mountain at the starting point of the Duku Highway. Then, we conducted mineral composition analysis tests, essential laboratory physical property measurement, large scale multiple freezing-thawing cyclic salt-frost heaving tests, shear strength tests, and unconfined compressive strength tests on the samples. According to the test results presented, the collected saline soil differed from saline soil in other regions and fell into “chlorite saline soils.” As the number of freezing-thawing cycles increased, the overall salt-frost heaving capacity increased and then decreased in the freezing process but first reduced and then increased in the thawing process. Thus, the salt-frost heaving capacity was cumulative in freezing/thawing cycles. The peak salt-frost heaving capacity reached a maximum after 1 freezing-thawing cycle and then dropped drastically and fluctuated regularly. After 6 freezing-thawing cycles, the displacement deformation and time formed a new equilibrium. After 7 freezing-thawing cycles, the displacement and deformation of the soil no longer appear negative. As the number of freezing-thawing cycles increased, the cohesive force of saline soil first increased and then dropped steadily, the internal friction angle first dropped and then increased steadily, and the unconfined shear strength first increased and then decreased. These research results provided data supporting the prevention and controlling highway saline soil disasters with insightful references for the other projects in this region.


Sign in / Sign up

Export Citation Format

Share Document