scholarly journals Proton-Detected Solid-State NMR Spectroscopy of Spin-1/2 Nuclei with Large Chemical Shift Anisotropy

Author(s):  
Amrit Venkatesh ◽  
Frédéric Perras ◽  
Aaron Rossini

<p>Constant-time (CT) dipolar heteronuclear multiple quantum coherence (D-HMQC) has previously been demonstrated as a method for proton detection of high-resolution wideline NMR spectra of spin-1/2 nuclei with large chemical shift anisotropy (CSA). However, <sup>1</sup>H transverse relaxation and <i>t</i><sub>1</sub>-noise often reduce the sensitivity of D-HMQC experiments, preventing the theoretical gains in sensitivity provided by <sup>1</sup>H detection from being realized. Here we demonstrate a series of improved pulse sequences for <sup>1</sup>H detection of spin-1/2 nuclei under fast MAS, with <sup>195</sup>Pt SSNMR experiments on cisplatin as an example. First, a new <i>t</i><sub>1</sub>-incrementation protocol for D-HMQC dubbed Arbitrary Indirect Dwell (AID) is demonstrated. AID allows the use of arbitrary, rotor asynchronous <i>t</i><sub>1</sub>-increments, but removes the constant time period from CT D-HMQC, resulting in improved sensitivity by reducing transverse relaxation losses. Next, we show that short high-power adiabatic pulses (SHAPs), which efficiently invert broad MAS sideband manifolds, can be effectively incorporated into <sup>1</sup>H detected symmetry-based resonance echo double resonance (S-REDOR) and <i>t</i><sub>1</sub>-noise eliminated D-HMQC experiments. The S-REDOR experiments with SHAPs provide approximately double the dipolar dephasing, as compared to experiments with rectangular inversion pulses. We lastly show that sensitivity and resolution can be further enhanced with the use of swept excitation pulses as well as adiabatic magic angle turning.</p>

2021 ◽  
Author(s):  
Amrit Venkatesh ◽  
Frédéric Perras ◽  
Aaron Rossini

<p>Constant-time (CT) dipolar heteronuclear multiple quantum coherence (D-HMQC) has previously been demonstrated as a method for proton detection of high-resolution wideline NMR spectra of spin-1/2 nuclei with large chemical shift anisotropy (CSA). However, <sup>1</sup>H transverse relaxation and <i>t</i><sub>1</sub>-noise often reduce the sensitivity of D-HMQC experiments, preventing the theoretical gains in sensitivity provided by <sup>1</sup>H detection from being realized. Here we demonstrate a series of improved pulse sequences for <sup>1</sup>H detection of spin-1/2 nuclei under fast MAS, with <sup>195</sup>Pt SSNMR experiments on cisplatin as an example. First, a new <i>t</i><sub>1</sub>-incrementation protocol for D-HMQC dubbed Arbitrary Indirect Dwell (AID) is demonstrated. AID allows the use of arbitrary, rotor asynchronous <i>t</i><sub>1</sub>-increments, but removes the constant time period from CT D-HMQC, resulting in improved sensitivity by reducing transverse relaxation losses. Next, we show that short high-power adiabatic pulses (SHAPs), which efficiently invert broad MAS sideband manifolds, can be effectively incorporated into <sup>1</sup>H detected symmetry-based resonance echo double resonance (S-REDOR) and <i>t</i><sub>1</sub>-noise eliminated D-HMQC experiments. The S-REDOR experiments with SHAPs provide approximately double the dipolar dephasing, as compared to experiments with rectangular inversion pulses. We lastly show that sensitivity and resolution can be further enhanced with the use of swept excitation pulses as well as adiabatic magic angle turning.</p>


2008 ◽  
Vol 60 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Stephen Pickup ◽  
Seung-Cheol Lee ◽  
Anthony Mancuso ◽  
Jerry D. Glickson

2007 ◽  
Vol 129 (17) ◽  
pp. 5318-5319 ◽  
Author(s):  
Benjamin J. Wylie ◽  
Lindsay J. Sperling ◽  
Heather L. Frericks ◽  
Gautam J. Shah ◽  
W. Trent Franks ◽  
...  

2020 ◽  
Vol 22 (36) ◽  
pp. 20815-20828 ◽  
Author(s):  
Amrit Venkatesh ◽  
Xuechen Luan ◽  
Frédéric A. Perras ◽  
Ivan Hung ◽  
Wenyu Huang ◽  
...  

t1-Noise eliminated (TONE) heteronuclear multiple quantum correlation (HMQC) solid-state nuclear magnetic resonance pulse sequences improve the sensitivity of 2D 1H{X} heteronuclear correlation experiments with X = 17O, 25Mg, 27Al and 35Cl.


Sign in / Sign up

Export Citation Format

Share Document