scholarly journals Coherent Acoustic Interferometry During the Photo-Driven Oxygen Evolution Reaction Associates Strain Fields with the Reactive Oxygen Intermediate

Author(s):  
Suryansh Singh ◽  
Hanna Lyle ◽  
Luca D'Amario ◽  
Elena Magnano ◽  
Ilya Vinogradov ◽  
...  

The oxygen evolution reaction (OER) from water requires the formation of meta-stable, reactive oxygen intermediates to enable oxygen-oxygen bond formation. On the other hand, such reactive intermediates could also structurally modify the catalyst. A descriptor for the overall catalytic activity, the first electron and proton transfer OER intermediate from water, (M-OH*), has been associated with significant distortions of the metal-oxygen bonds upon charge-trapping. Time-resolved spectroscopy of in-situ, photo-driven OER on transition metal oxide surfaces has characterized M-OH* for the charge trapped and the symmetry of the lattice distortions by optical and vibrational transitions, respectively, but had yet to detect an interfacial strain field arising from a surface coverage M-OH*. Here, we utilize picosecond, coherent acoustic interferometry to detect the uniaxial strain normal (100) to the SrTiO<sub>3</sub>/aqueous interface directly caused by Ti-OH*. The spectral analysis applies a fairly general methodology for detecting a combination of the spatial extent, magnitude, and generation time of the interfacial strain through the coherent oscillations’<br>phase. For lightly n-doped SrTiO<sub>3</sub>, we identify the strain generation time (1.31 ps), which occurs simultaneously with Ti-OH* formation, and a tensile strain of 0.06% (upper limit 0.6%). In addition to fully characterizing this intermediate across visible, mid-infrared, and now GHz-THz probes on SrTiO<sub>3</sub>, that strain fields occur with the creation of some M-OH* modifies design strategies for tuning material properties for catalytic activity and provides insight into photo-induced degradation so prevalent for OER. To that end, the work put forth here provides a unique methodology to characterize intermediate-induced interfacial strain across OER catalysts.

2021 ◽  
Author(s):  
Suryansh Singh ◽  
Hanna Lyle ◽  
Luca D'Amario ◽  
Elena Magnano ◽  
Ilya Vinogradov ◽  
...  

The oxygen evolution reaction (OER) from water requires the formation of meta-stable, reactive oxygen intermediates to enable oxygen-oxygen bond formation. On the other hand, such reactive intermediates could also structurally modify the catalyst. A descriptor for the overall catalytic activity, the first electron and proton transfer OER intermediate from water, (M-OH*), has been associated with significant distortions of the metal-oxygen bonds upon charge-trapping. Time-resolved spectroscopy of in-situ, photo-driven OER on transition metal oxide surfaces has characterized M-OH* for the charge trapped and the symmetry of the lattice distortions by optical and vibrational transitions, respectively, but had yet to detect an interfacial strain field arising from a surface coverage M-OH*. Here, we utilize picosecond, coherent acoustic interferometry to detect the uniaxial strain normal (100) to the SrTiO<sub>3</sub>/aqueous interface directly caused by Ti-OH*. The spectral analysis applies a fairly general methodology for detecting a combination of the spatial extent, magnitude, and generation time of the interfacial strain through the coherent oscillations’<br>phase. For lightly n-doped SrTiO<sub>3</sub>, we identify the strain generation time (1.31 ps), which occurs simultaneously with Ti-OH* formation, and a tensile strain of 0.06% (upper limit 0.6%). In addition to fully characterizing this intermediate across visible, mid-infrared, and now GHz-THz probes on SrTiO<sub>3</sub>, that strain fields occur with the creation of some M-OH* modifies design strategies for tuning material properties for catalytic activity and provides insight into photo-induced degradation so prevalent for OER. To that end, the work put forth here provides a unique methodology to characterize intermediate-induced interfacial strain across OER catalysts.


2021 ◽  
Vol 5 (6) ◽  
pp. 1801-1808
Author(s):  
Jie Yu ◽  
Tao Zhang ◽  
Changchang Xing ◽  
Xuejiao Li ◽  
Xinyang Li ◽  
...  

NiS2/Fe-P nanospheres were developed as an efficient oxygen evolution reaction electrocatalyst with a low overpotential (218 mV @ 10 mA cm−2 and 306 mV @ 800 mA cm−2) and Tafel slope (47.5 mV dec−1).


2019 ◽  
Vol 7 (16) ◽  
pp. 9690-9697 ◽  
Author(s):  
Jie-Song Sun ◽  
Yi-Tong Zhou ◽  
Rui-Qi Yao ◽  
Hang Shi ◽  
Zi Wen ◽  
...  

Chromium-doped NiFe oxyhydroxide nanosheets that are quasi-vertically oriented on three-dimensional nanoporous gold exhibit superior catalytic activity towards the oxygen evolution reaction.


2018 ◽  
Vol 11 (7) ◽  
pp. 1736-1741 ◽  
Author(s):  
Juzhe Liu ◽  
Yongfei Ji ◽  
Jianwei Nai ◽  
Xiaogang Niu ◽  
Yi Luo ◽  
...  

A simple strategy to synthesize ultrathin, amorphous and alloyed structural cobalt–vanadium hydr(oxy)oxide catalysts with enhanced water oxidation catalytic activity.


1999 ◽  
Vol 202 (22) ◽  
pp. 3135-3143 ◽  
Author(s):  
J.N. Boyd ◽  
L.E. Burnett

Oysters are frequently exposed to severely hypoxic conditions, especially during summer months. During the summer, there are also large numbers of disease-related oyster mortalities. This research was conducted to determine whether exposure to environmental hypoxia reduces the ability of oyster hemocytes to produce reactive oxygen intermediates (ROIs), an important part of their defense system. Oysters of the species Crassostrea virginica were held in normoxic (P(O)(2)=20.0-20.7 kPa, pH 7.8-8.0) and hypoxic conditions (P(O)(2)=4.0-6.7 kPa, pH 7.1-7.4). In vivo hemolymph variables (P(O)(2), P(CO)(2) and pH) were measured after both 1 hour and 2 days in each treatment to determine the appropriate environment for subsequent hemocyte experiments. Production of reactive oxygen intermediates by hemocytes was measured using luminol-enhanced chemiluminescence (CL). During CL tests, hemocytes were held under the following conditions: air (P(O)(2)=20.7, P(CO)(2)&lt;0.07, pH 7.6), in vivo hemolymph conditions of normoxic oysters (P(O)(2)=5.2, P(CO)(2)=0.27, pH 7.6), and in vivo hemolymph conditions of hypoxic oysters (P(O)(2)=1.47, P(CO)(2)=0.53, pH 7.1). Production of ROIs under hypoxic conditions was 33 % of that under normoxia. This decrease was the result of specific and independent effects of lower oxygen levels and decreased pH. It was not due to any direct effect of CO(2).


1985 ◽  
Vol 161 (2) ◽  
pp. 392-408 ◽  
Author(s):  
G F Gerberick ◽  
J B Willoughby ◽  
W F Willoughby

Alveolar macrophages (AM) from pathogen-free rabbits were unable to release reactive oxygen intermediates (ROI) unless they were conditioned in serum for 24-48 h before triggering with membrane-active agents. The degree of serum conditioning of AM depended upon the concentration of serum used; optimal ROI release was obtained at or above 7.5% fetal bovine serum (FBS). FBS, autologous rabbit serum, pooled rabbit serum, and pooled human serum were each capable of conditioning AM for release of ROI. Serum conditioning of AM requires synthesis of new protein(s); and the enzyme required for ROI production, NADPH oxidase, was only detectable in serum-conditioned cells. Moreover, serum-conditioned cells lost their ability to release ROI after transfer to serum-free medium, while cells maintained in serum-free medium acquired the capacity to release ROI after their transfer to serum-containing medium, demonstrating the reversibility of the phenomenon. Initial purification data indicate that conditioning is mediated by a discrete serum constituent, which precipitates 40-80% saturated ammonium sulfate, does not bind to Cibacron Blue columns, and has a molecular weight of 30,000 to 50,000, as determined by molecular exclusion chromatography. Unlike gamma interferon, which also enhances ROI release by macrophages, our serum-conditioning factor is not acid labile, retaining 67% of its activity after 120 min incubation at pH 2.0. Moreover, it does not appear to be a contaminating endotoxin, since LPS neither conditioned AM for ROI production, nor triggered ROI production by serum-conditioned AM. We propose that such a conditioning requirement may normally protect the lung against ROI-mediated tissue injury. However, during a pulmonary inflammatory reaction initiated by other mediator systems, the resulting transudation of plasma proteins into the alveolar spaces may condition AM in situ for ROI production.


2018 ◽  
Vol 6 (45) ◽  
pp. 22497-22502 ◽  
Author(s):  
Ying Pan ◽  
Hangjuan Ren ◽  
Haiwei Du ◽  
Fuyang Cao ◽  
Yifeng Jiang ◽  
...  

Enhanced catalytic activity of Co3O4@CoSx through surface sulfurization.


Sign in / Sign up

Export Citation Format

Share Document