alveolar macrophages
Recently Published Documents


TOTAL DOCUMENTS

4900
(FIVE YEARS 508)

H-INDEX

123
(FIVE YEARS 12)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Barbara Spix ◽  
Elisabeth S. Butz ◽  
Cheng-Chang Chen ◽  
Anna Scotto Rosato ◽  
Rachel Tang ◽  
...  

AbstractLung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3−/− mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Elza Evren ◽  
Emma Ringqvist ◽  
Jean-Marc Doisne ◽  
Anna Thaller ◽  
Natalie Sleiers ◽  
...  

Despite their importance in lung health and disease, it remains unknown how human alveolar macrophages develop early in life. Here we define the ontogeny of human alveolar macrophages from embryonic progenitors in vivo, using a humanized mouse model expressing human cytokines (MISTRG mice). We identified alveolar macrophage progenitors in human fetal liver that expressed the GM-CSF receptor CD116 and the transcription factor MYB. Transplantation experiments in MISTRG mice established a precursor–product relationship between CD34−CD116+ fetal liver cells and human alveolar macrophages in vivo. Moreover, we discovered circulating CD116+CD64−CD115+ macrophage precursors that migrated from the liver to the lung. Similar precursors were present in human fetal lung and expressed the chemokine receptor CX3CR1. Fetal CD116+CD64− macrophage precursors had a proliferative gene signature, outcompeted adult precursors in occupying the perinatal alveolar niche, and developed into functional alveolar macrophages. The discovery of the fetal alveolar macrophage progenitor advances our understanding of human macrophage origin and ontogeny.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhixing Zhu ◽  
Xihua Lian ◽  
Xiaoshan Su ◽  
Weijing Wu ◽  
Yiming Zeng ◽  
...  

Abstract Background Chronic obstructive pulmonary disease (COPD) is a frequently encountered disease condition in clinical practice mainly caused by cigarette smoke (CS). The aim of this study was to investigate the protective roles of human adipose-derived stem cells-derived exosomes (ADSCs-Exo) in CS-induced lung inflammation and injury and explore the underlying mechanism by discovering the effects of ADSCs-Exo on alveolar macrophages (AMs) pyroptosis. Methods ADSCs were isolated from human adipose tissues harvested from three healthy donors, and then ADSCs-Exo were isolated. In vivo, 24 age-matched male C57BL/6 mice were exposed to CS for 4 weeks, followed by intratracheal administration of ADSCs-Exo or phosphate buffered saline. In vitro, MH-S cells, derived from mouse AMs, were stimulated by 2% CS extract (CSE) for 24 h, followed by the treatment of ADSCs-Exo or phosphate buffered saline. Pulmonary inflammation was analyzed by detecting pro-inflammatory cells and mediators in the bronchoalveolar lavage fluid. Lung histology was assessed by hematoxylin and eosin staining. Mucus production was determined by Alcian blue-periodic acid-Schiff staining. The profile of AMs pyroptosis was evaluated by detecting the levels of pyroptosis-indicated proteins. The inflammatory response in AMs and the phagocytic activity of AMs were also investigated. Results In mice exposed to CS, the levels of pro-inflammatory cells and mediators were significantly increased, mucus production was markedly increased and lung architecture was obviously disrupted. AMs pyroptosis was elevated and AMs phagocytosis was inhibited. However, the administration of ADSCs-Exo greatly reversed these alterations caused by CS exposure. Consistently, in MH-S cells with CSE-induced properties modelling those found in COPD, the cellular inflammatory response was elevated, the pyroptotic activity was upregulated while the phagocytosis was decreased. Nonetheless, these abnormalities were remarkably alleviated by the treatment of ADSCs-Exo. Conclusions ADSCs-Exo effectively attenuate CS-induced airway mucus overproduction, lung inflammation and injury by inhibiting AMs pyroptosis. Therefore, hADSCs-Exo may be a promising cell-free therapeutic candidate for CS-induced lung inflammation and injury.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Gautier Gilliaux ◽  
Daniel Desmecht

Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the known factors influencing this clinical diversity, genetic background has often been mentioned. In parallel, recent evidence has also pointed out that an early infectious experience affects heterologous infections severity. Here, we analyzed the importance of these two host-related factors in shaping the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection improves, in a genetic background-dependent manner, the immune system response against a subsequent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically attenuating the host inflammatory response without affecting viral replication. Moreover, we show that these AMs present similar rapid and increased production of neutrophil chemokines both in front of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role of primed AMs. These results corroborate other recent studies suggesting that the innate immunity cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.


2022 ◽  
Vol 8 (1) ◽  
pp. 56
Author(s):  
Joo-Yeon Lim ◽  
Yeon-Ju Kim ◽  
Hee-Moon Park

G-protein signaling is important for signal transduction, allowing various stimuli that are external to a cell to affect its internal molecules. In Aspergillus fumigatus, the roles of Gβ-like protein CpcB on growth, asexual development, drug sensitivity, and virulence in a mouse model have been previously reported. To gain a deeper insight into Aspergillus fumigatus sexual development, the ΔAfcpcB strain was generated using the supermater AFB62 strain and crossed with AFIR928. This cross yields a decreased number of cleistothecia, including few ascospores. The sexual reproductive organ-specific transcriptional analysis using RNAs from the cleistothecia (sexual fruiting bodies) indicated that the CpcB is essential for the completion of sexual development by regulating the transcription of sexual genes, such as veA, steA, and vosA. The ΔAfcpcB strain revealed increased resistance to oxidative stress by regulating genes for catalase, peroxiredoxin, and ergosterol biosynthesis. The ΔAfcpcB strain showed decreased uptake by alveolar macrophages in vitro, decreased sensitivity to Congo red, decreased expression of cell wall genes, and increased expression of the hydrophobin genes. Taken together, these findings indicate that AfCpcB plays important roles in sexual development, phagocytosis by alveolar macrophages, biosynthesis of the cell wall, and oxidative stress response.


Author(s):  
Zhenfeng Wang ◽  
Jiadi Lv ◽  
Pin Yu ◽  
Yajin Qu ◽  
Yabo Zhou ◽  
...  

AbstractExploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.


Cell Reports ◽  
2022 ◽  
Vol 38 (2) ◽  
pp. 110215
Author(s):  
Fei Chen ◽  
Darine W. El-Naccache ◽  
John J. Ponessa ◽  
Alexander Lemenze ◽  
Vanessa Espinosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document