Many-Body Effects Determine the Local Hydration Structure of Cs+ in Solution

Author(s):  
Debbie Zhuang ◽  
Marc Riera ◽  
Gregory K. Schenter ◽  
John Fulton ◽  
Francesco Paesani

<div> <div> <div> <p>A systematic analysis of the hydration structure of Cs+ ions in solution is derived from simulations carried out using a series of molecular models built upon a hierarchy of approximate representations of many-body effects in ion-water interactions. It is found that a pairwise-additive model, commonly used in biomolecular simulations, provides poor agreement with experimental X-ray spectra, indicating an incorrect description of the underlying hydration structure. Although the agreement with experiment improves in simulations with a polarizable model, the predicted hydration structure is found to lack the correct sequence of water shells. Progressive inclusion of explicit many- body effects in the representation of Cs<sup>+</sup>-water interactions as well as account for nuclear quantum effects is shown to be necessary for quantitatively reproducing the experimental spectra. Besides emphasizing the importance of many-body effects, these results suggests that molecular models rigorously derived from many-body expansions hold promise for realistic simulations of aqueous solutions. </p> </div> </div> </div>

2018 ◽  
Author(s):  
Debbie Zhuang ◽  
Marc Riera ◽  
Gregory K. Schenter ◽  
John Fulton ◽  
Francesco Paesani

<div> <div> <div> <p>A systematic analysis of the hydration structure of Cs+ ions in solution is derived from simulations carried out using a series of molecular models built upon a hierarchy of approximate representations of many-body effects in ion-water interactions. It is found that a pairwise-additive model, commonly used in biomolecular simulations, provides poor agreement with experimental X-ray spectra, indicating an incorrect description of the underlying hydration structure. Although the agreement with experiment improves in simulations with a polarizable model, the predicted hydration structure is found to lack the correct sequence of water shells. Progressive inclusion of explicit many- body effects in the representation of Cs<sup>+</sup>-water interactions as well as account for nuclear quantum effects is shown to be necessary for quantitatively reproducing the experimental spectra. Besides emphasizing the importance of many-body effects, these results suggests that molecular models rigorously derived from many-body expansions hold promise for realistic simulations of aqueous solutions. </p> </div> </div> </div>


Author(s):  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>The importance of many-body effects in the hydration of the hydronium ion (H3O+) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the coupled cluster level of theory for the low-lying isomers of H3O+(H2O)n clusters with n = 1 − 5. This is accomplished by partitioning individual fragments extracted from the whole clusters into “groups” that are classified by both the number of H3O+ and water molecules and the H-bonding connectivity within a given fragment. Effects due to the presence of the Zundel ion, (H5O2)+, are analyzed by further partitioning fragment groups by the “context” of their parent clusters. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO EDA), this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen-bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling the hydration of an excess proton in water. The comparison between the reference coupled cluster many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that many of these functionals yield an unbalanced treatment of the H3O+(H2O)n configuration space. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>The importance of many-body effects in the hydration of the hydronium ion (H3O+) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the coupled cluster level of theory for the low-lying isomers of H3O+(H2O)n clusters with n = 1 − 5. This is accomplished by partitioning individual fragments extracted from the whole clusters into “groups” that are classified by both the number of H3O+ and water molecules and the H-bonding connectivity within a given fragment. Effects due to the presence of the Zundel ion, (H5O2)+, are analyzed by further partitioning fragment groups by the “context” of their parent clusters. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO EDA), this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen-bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling the hydration of an excess proton in water. The comparison between the reference coupled cluster many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that many of these functionals yield an unbalanced treatment of the H3O+(H2O)n configuration space. </p> </div> </div> </div>


2019 ◽  
Vol 10 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Debbie Zhuang ◽  
Marc Riera ◽  
Gregory K. Schenter ◽  
John L. Fulton ◽  
Francesco Paesani

1995 ◽  
Vol 31 (14) ◽  
pp. 1149 ◽  
Author(s):  
P. Rees ◽  
C. Cooper ◽  
P. Blood ◽  
P.M. Smowton ◽  
J. Hegarty

Sign in / Sign up

Export Citation Format

Share Document