biomolecular simulations
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 51)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pandian Sokkar ◽  
Mirja Harms ◽  
Christina Stürzel ◽  
Andrea Gilg ◽  
Gönül Kizilsavas ◽  
...  

AbstractEPI-X4, a 16-mer fragment of albumin, is a specific endogenous antagonist and inverse agonist of the CXC-motif-chemokine receptor 4 (CXCR4) and thus a key regulator of CXCR4 function. Accordingly, activity-optimized synthetic derivatives of EPI-X4 are promising leads for the therapy of CXCR4-linked disorders such as cancer or inflammatory diseases. We investigated the binding of EPI-X4 to CXCR4, which so far remained unclear, by means of biomolecular simulations combined with experimental mutagenesis and activity studies. We found that EPI-X4 interacts through its N-terminal residues with CXCR4 and identified its key interaction motifs, explaining receptor antagonization. Using this model, we developed shortened EPI-X4 derivatives (7-mers) with optimized receptor antagonizing properties as new leads for the development of CXCR4 inhibitors. Our work reveals the molecular details and mechanism by which the first endogenous peptide antagonist of CXCR4 interacts with its receptor and provides a foundation for the rational design of improved EPI-X4 derivatives.


Biophysica ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 279-296
Author(s):  
Federico Fogolari ◽  
Gennaro Esposito

Estimation of solvent entropy from equilibrium molecular dynamics simulations is a long-standing problem in statistical mechanics. In recent years, methods that estimate entropy using k-th nearest neighbours (kNN) have been applied to internal degrees of freedom in biomolecular simulations, and for the rigorous computation of positional-orientational entropy of one and two molecules. The mutual information expansion (MIE) and the maximum information spanning tree (MIST) methods were proposed and used to deal with a large number of non-independent degrees of freedom, providing estimates or bounds on the global entropy, thus complementing the kNN method. The application of the combination of such methods to solvent molecules appears problematic because of the indistinguishability of molecules and of their symmetric parts. All indistiguishable molecules span the same global conformational volume, making application of MIE and MIST methods difficult. Here, we address the problem of indistinguishability by relabeling water molecules in such a way that each water molecule spans only a local region throughout the simulation. Then, we work out approximations and show how to compute the single-molecule entropy for the system of relabeled molecules. The results suggest that relabeling water molecules is promising for computation of solvation entropy.


2021 ◽  
Author(s):  
Okke Melse ◽  
Iris Antes

Zn2+ ions play an important role in biology, but accurate sampling of metalloproteins using Molecular Mechanics remains challenging. Several models have been proposed to describe Zn2+ in biomolecular simulations, ranging from nonbonded models, employing classical 12-6 Lennard-Jones (LJ) potentials or extended LJ-potentials, to dummy-atom models and bonded models. We evaluated the performance of a large variety of these Zn2+ models in two challenging environments for which little is known about the performance of these methods, namely in a monometallic (Carbonic Anhydrase II) and a bimetallic ligand binding site (metallo-β-lactamase VIM-2). We focused on properties which are important for a stable, correct binding site description during molecular dynamics (MD) simulations, because a proper treatment of the metal coordination and forces are here essential. We observed that the strongest difference in performance of these Zn2+ models can be found in the description of interactions between Zn2+ and non-charged ligating atoms, such as the imidazole nitrogen in histidine residues. We further show that the nonbonded (12-6 LJ) models struggle most in the description of Zn2+-biomolecule interactions, while the inclusion of ion-induced dipole effects strongly improves the description between Zn2+ and non-charged ligating atoms. The octahedral dummy-atom models result in highly stable simulations and correct Zn2+ coordination, and are therefore highly suitable for binding sites containing an octahedral coordinated Zn2+ ion. The results from this evaluation study in ligand binding sites can guide structural studies of Zn2+ containing proteins, such as MD-refinement of docked ligand poses and long-term MD simulations.


2021 ◽  
Author(s):  
Sebastian Falkner ◽  
Nadine Schwierz

Water exchange between the first and second hydration shell is essential for the role of Mg2+ in biochemical processes. In order to provide microscopic insights into the exchange mechanism, we resolve the exchange pathways by all-atom molecular dynamics simulations and transition path sampling. Since the exchange kinetics relies on the choice of the water model and the ionic force field, we systematically investigate the influence of seven different polarizable and non-polarizable water and three different Mg2+ models. In all cases, water exchange can occur either via an indirect or direct mechanism (exchanging molecules occupy different/same position on water octahedron). In addition, the results reveal a crossover from an interchange dissociative (Id) to an associative (Ia) reaction mechanism dependent on the range of the Mg2+-water interaction potential of the respective force field. Standard non-polarizable force fields follow the Id mechanism in agreement with experimental results. By contrast, polarizable and long-ranged non-polarizable force fields follow the Ia mechanism. Our results provide a comprehensive view on the influence of the water model and ionic force field on the exchange dynamics and the foundation to assess the choice of the force field in biomolecular simulations.


Sign in / Sign up

Export Citation Format

Share Document