variational calculations
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 24)

H-INDEX

49
(FIVE YEARS 3)

Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 86
Author(s):  
Anand Bhatia ◽  
Richard Drachman

Polarizabilities and hyperpolarizabilities, α1, β1, γ1, α2, β2, γ2, α3, β3, γ3, δ and ε of hydrogenic systems have been calculated in the presence of a Debye–Huckel potential, using pseudostates for the S, P, D and F states. All of these converge very quickly as the number of terms in the pseudostates is increased and are essentially independent of the nonlinear parameters. All the results are in good agreement with the results obtained for hydrogenic systems obtained by Drachman. The effective potential seen by the outer electron is −α1/x4 + (6β1 − α2)/x6 + higher-order terms, where x is the distance from the outer electron to the nucleus. The exchange and electron–electron correlations are unimportant because the outer electron is far away from the nucleus. This implies that the conventional variational calculations are not necessary. The results agree well with the results of Drachman for the screening parameter equal to zero in the Debye–Huckel potential. We can calculate the energies of Rydberg states by using the polarizabilities and hyperpolarizabilities in the presence of Debye potential seen by the outer electron when the atoms are embedded in a plasma. Most calculations are carried out in the absence of the Debye–Huckel potential. However, it is not possible to carry out experiments when there is a complete absence of plasma at a particular electron temperature and density. The present calculations of polarizabilities and hyperpolarizabilities will provide accurate results for Rydberg states when the measurements for such states are carried out.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4269
Author(s):  
María Luisa Senent ◽  
Samira Dalbouha

Torsional and rotational spectroscopic properties of pyruvic acid are determined using highly correlated ab initio methods and combining two different theoretical approaches: Second order perturbation theory and a variational procedure in three-dimensions. Four equilibrium geometries of pyruvic acid, Tc, Tt, Ct, and CC, outcome from a search with CCSD(T)-F12. All of them can be classified in the Cs point group. The variational calculations are performed considering the three internal rotation modes responsible for the non-rigidity as independent coordinates. More than 50 torsional energy levels (including torsional subcomponents) are localized in the 406–986 cm−1 region and represent excitations of the ν24 (skeletal torsion) and the ν23 (methyl torsion) modes. The third independent variable, the OH torsion, interacts strongly with ν23. The A1/E splitting of the ground vibrational state has been evaluated to be 0.024 cm−1 as it was expected given the high of the methyl torsional barrier (338 cm−1). A very good agreement with respect to previous experimental data concerning fundamental frequencies (νCAL − νEXP ~ 1 cm−1), and rotational parameters (B0CAL − B0EXP < 5 MHz), is obtained.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Tommaso Guaita ◽  
Lucas Hackl ◽  
Tao Shi ◽  
Eugene Demler ◽  
J. Ignacio Cirac

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
J.-Y. Wan ◽  
M.-S. Wu ◽  
J.-Y. Zhang ◽  
Z.-C. Yan

2021 ◽  
Vol 57 (4) ◽  
Author(s):  
B. Bally ◽  
A. Sánchez-Fernández ◽  
T. R. Rodríguez

2021 ◽  
Vol 57 (2) ◽  
Author(s):  
B. Bally ◽  
A. Sánchez-Fernández ◽  
T. R. Rodríguez

Author(s):  
Ernesto Quintas-Sánchez ◽  
Richard Dawes

The Born–Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later—despite astonishing advances in computational power—the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 8 ◽  
Author(s):  
Martin Tschöpe ◽  
Benjamin Schröder ◽  
Sebastian Erfort ◽  
Guntram Rauhut

From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule (COM) and therefore likely to be a building block for biologically relevant molecules. Since it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance in this field. Although experimental data are available for certain bands, for some energy ranges such as above 1200 cm−1 reliable data virtually do not exist. In addition, high-level ab initio calculations are neither reported for ketenimine nor for one of its deuterated isotopologues. In this paper, we provide for the first time data from accurate quantum chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on high-level potential energy surfaces obtained from explicitly correlated coupled-cluster calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of ketenimine has been studied in detail by variational calculations relying on rovibrational configuration interaction (RVCI) theory. Strong Fermi resonances were found for all isotopologues. Rovibrational infrared intensities have been obtained from dipole moment surfaces determined from the distinguishable cluster approximation. A comparison of the spectra of the CH2CNH molecule with experimental data validates our results, but also reveals new insight about the system, which shows very strong Coriolis coupling effects.


Sign in / Sign up

Export Citation Format

Share Document