scholarly journals PrivBV: Distance-aware encoding for distributed data with local differential privacy

2022 ◽  
Vol 27 (2) ◽  
pp. 412-421
Author(s):  
Lin Sun ◽  
Guolou Ping ◽  
Xiaojun Ye
Author(s):  
Zhaowei Zhu ◽  
Jingxuan Zhu ◽  
Ji Liu ◽  
Yang Liu

In this paper, we study Federated Bandit, a decentralized Multi-Armed Bandit problem with a set of N agents, who can only communicate their local data with neighbors described by a connected graph G. Each agent makes a sequence of decisions on selecting an arm from M candidates, yet they only have access to local and potentially biased feedback/evaluation of the true reward for each action taken. Learning only locally will lead agents to sub-optimal actions while converging to a no-regret strategy requires a collection of distributed data. Motivated by the proposal of federated learning, we aim for a solution with which agents will never share their local observations with a central entity, and will be allowed to only share a private copy of his/her own information with their neighbors. We first propose a decentralized bandit algorithm \textttGossip\_UCB, which is a coupling of variants of both the classical gossiping algorithm and the celebrated Upper Confidence Bound (UCB) bandit algorithm. We show that \textttGossip\_UCB successfully adapts local bandit learning into a global gossiping process for sharing information among connected agents, and achieves guaranteed regret at the order of O(\max\ \textttpoly (N,M) łog T, \textttpoly (N,M)łog_łambda_2^-1 N\ ) for all N agents, where łambda_2\in(0,1) is the second largest eigenvalue of the expected gossip matrix, which is a function of G. We then propose \textttFed\_UCB, a differentially private version of \textttGossip\_UCB, in which the agents preserve ε-differential privacy of their local data while achieving O(\max \\frac\textttpoly (N,M) ε łog^2.5 T, \textttpoly (N,M) (łog_łambda_2^-1 N + łog T) \ ) regret.


Author(s):  
Xianwen Sun ◽  
Ruzhi Xu ◽  
Longfei Wu ◽  
Zhitao Guan

AbstractA wide range of data mining applications benefit from the low latency offered by edge computing. However, edge computing suffers from limited computing resources, which inhibits the applications of the computationally expensive data mining methods. In the edge-cloud environment, usually, the participants turn to collaboratively train machine-learning models that yield more accurate prediction results. However, data owners may not be willing to sharing the own data for the privacy concerns. To handle such disparate goals, we focus on tree-based distributed data mining scheme with differential privacy, which is computationally friendly. The basic idea of our approach is based on a distributed ensemble strategy. Each participant builds an elegant decision model based on their own data, which has a good tradeoff between the computation and the accuracy of the data distribution, and shares it with other participants after being injected with the elaborate noise. Then the useful knowledge transferred from the decision models is acquired by other participants in an adaptive ensemble strategy. Both the theoretical analysis and the experiments show that our scheme provides an efficient data mining manner that can achieve a good prediction accuracy while providing rigorous privacy guarantee over the distributed data.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Zheng ◽  
Ke Yan ◽  
Jingyuan Duan ◽  
Wenyi Tang ◽  
Ling Tian

Local differential privacy has been considered the standard measurement for privacy preservation in distributed data collection. Corresponding mechanisms have been designed for multiple types of tasks, like the frequency estimation for categorical values and the mean value estimation for numerical values. However, the histogram publication of numerical values, containing abundant and crucial clues for the whole dataset, has not been thoroughly considered under this measurement. To simply encode data into different intervals upon each query will soon exhaust the bandwidth and the privacy budgets, which is infeasible for real scenarios. Therefore, this paper proposes a highly efficient framework for differentially private histogram publication of numerical values in a distributed environment. The proposed algorithms can efficiently adopt the correlations among multiple queries and achieve an optimal resource consumption. We also conduct extensive experiments on real-world data traces, and the results validate the improvement of proposed algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guoming Lu ◽  
Xu Zheng ◽  
Jingyuan Duan ◽  
Ling Tian ◽  
Xia Wang

The data publication from multiple contributors has been long considered a fundamental task for data processing in various domains. It has been treated as one prominent prerequisite for enabling AI techniques in wireless networks. With the emergence of diversified smart devices and applications, data held by individuals becomes more pervasive and nontrivial for publication. First, the data are more private and sensitive, as they cover every aspect of daily life, from the incoming data to the fitness data. Second, the publication of such data is also bandwidth-consuming, as they are likely to be stored on mobile devices. The local differential privacy has been considered a novel paradigm for such distributed data publication. However, existing works mostly request the encoding of contents into vector space for publication, which is still costly in network resources. Therefore, this work proposes a novel framework for highly efficient privacy-preserving data publication. Specifically, two sampling-based algorithms are proposed for the histogram publication, which is an important statistic for data analysis. The first algorithm applies a bit-level sampling strategy to both reduce the overall bandwidth and balance the cost among contributors. The second algorithm allows consumers to adjust their focus on different intervals and can properly allocate the sampling ratios to optimize the overall performance. Both the analysis and the validation of real-world data traces have demonstrated the advancement of our work.


2005 ◽  
Vol 4 (2) ◽  
pp. 393-400
Author(s):  
Pallavali Radha ◽  
G. Sireesha

The data distributors work is to give sensitive data to a set of presumably trusted third party agents.The data i.e., sent to these third parties are available on the unauthorized places like web and or some ones systems, due to data leakage. The distributor must know the way the data was leaked from one or more agents instead of as opposed to having been independently gathered by other means. Our new proposal on data allocation strategies will improve the probability of identifying leakages along with Security attacks typically result from unintended behaviors or invalid inputs.  Due to too many invalid inputs in the real world programs is labor intensive about security testing.The most desirable thing is to automate or partially automate security-testing process. In this paper we represented Predicate/ Transition nets approach for security tests automated generationby using formal threat models to detect the agents using allocation strategies without modifying the original data.The guilty agent is the one who leaks the distributed data. To detect guilty agents more effectively the idea is to distribute the data intelligently to agents based on sample data request and explicit data request. The fake object implementation algorithms will improve the distributor chance of detecting guilty agents.


Author(s):  
D. V. Gribanov

Introduction. This article is devoted to legal regulation of digital assets turnover, utilization possibilities of distributed computing and distributed data storage systems in activities of public authorities and entities of public control. The author notes that some national and foreign scientists who study a “blockchain” technology (distributed computing and distributed data storage systems) emphasize its usefulness in different activities. Data validation procedure of digital transactions, legal regulation of creation, issuance and turnover of digital assets need further attention.Materials and methods. The research is based on common scientific (analysis, analogy, comparing) and particular methods of cognition of legal phenomena and processes (a method of interpretation of legal rules, a technical legal method, a formal legal method and a formal logical one).Results of the study. The author conducted an analysis which resulted in finding some advantages of the use of the “blockchain” technology in the sphere of public control which are as follows: a particular validation system; data that once were entered in the system of distributed data storage cannot be erased or forged; absolute transparency of succession of actions while exercising governing powers; automatic repeat of recurring actions. The need of fivefold validation of exercising governing powers is substantiated. The author stresses that the fivefold validation shall ensure complex control over exercising of powers by the civil society, the entities of public control and the Russian Federation as a federal state holding sovereignty over its territory. The author has also conducted a brief analysis of judicial decisions concerning digital transactions.Discussion and conclusion. The use of the distributed data storage system makes it easier to exercise control due to the decrease of risks of forge, replacement or termination of data. The author suggests defining digital transaction not only as some actions with digital assets, but also as actions toward modification and addition of information about legal facts with a purpose of its establishment in the systems of distributed data storage. The author suggests using the systems of distributed data storage for independent validation of information about activities of the bodies of state authority. In the author’s opinion, application of the “blockchain” technology may result not only in the increase of efficiency of public control, but also in the creation of a new form of public control – automatic control. It is concluded there is no legislation basis for regulation of legal relations concerning distributed data storage today.


Sign in / Sign up

Export Citation Format

Share Document