Wind Farm Layout Optimization Based on CFD Simulations

Author(s):  
Bruno Carmo ◽  
Luis Eduardo Boni Cruz
Author(s):  
Jim Y. J. Kuo ◽  
I. Amy Wong ◽  
David A. Romero ◽  
J. Christopher Beck ◽  
Cristina H. Amon

The aim of wind farm design is to maximize energy production and minimize cost. In particular, optimizing the placement of turbines in a wind farm is crucial to minimize the wake effects that impact energy production. Most work on wind farm layout optimization has focused on flat terrains and spatially uniform wind regimes. In complex terrains, however, the lack of accurate analytical wake models makes it difficult to evaluate the performance of layouts quickly and accurately as needed for optimization purposes. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts in complex terrains. High-fidelity CFD simulations of wake propagation are utilized in the proposed algorithm to constantly improve the accuracy of the predicted wake effects from upstream turbines in complex terrains. By exploiting the deterministic nature of MIP layout solutions, the number of expensive CFD simulations can be reduced significantly. The proposed algorithm is demonstrated on the layout design of a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the algorithm is capable of producing good wind farm layouts in complex terrains while minimizing the number of computationally expensive wake simulations.


Author(s):  
Puyi Yang ◽  
Hamidreza Najafi

Abstract The accuracy of analytical wake models applied in wind farm layout optimization (WFLO) problems plays a vital role in the present era that the high-fidelity methods such as LES and RANS are still not able to handle an optimization problem for large wind farms. Based on a verity of analytical wake models developed in the past decades, FLOw Redirection and Induction in Steady State (FLORIS) has been published as a tool integrated several widely used wake models and the expansions for them. This paper compares four wake models selected from FLORIS by applying three classical WFLO scenarios. The results illustrate that the Jensen wake model is the fastest one but the defect of underestimation of velocity deficit is obvious. The Multi Zone model needs to be applied additional tunning on the parameters inside the model to fit specific wind turbines. The Gaussian-Curl wake model as an advanced expansion of the Gaussian wake model does not perform an observable improvement in the current study that the yaw control is not included. The default Gaussian wake model is recommended to be used in the WFLO projects which implemented under the FLROIS framework and has similar wind conditions with the present work.


Author(s):  
Ning Quan ◽  
Harrison Kim

The power maximizing grid-based wind farm layout optimization problem seeks to determine the layout of a given number of turbines from a grid of possible locations such that wind farm power output is maximized. The problem in general is a nonlinear discrete optimization problem which cannot be solved to optimality, so heuristics must be used. This article proposes a new two stage heuristic that first finds a layout that minimizes the maximum pairwise power loss between any pair of turbines. The initial layout is then changed one turbine at a time to decrease sum of pairwise power losses. The proposed heuristic is compared to the greedy algorithm using real world data collected from a site in Iowa. The results suggest that the proposed heuristic produces layouts with slightly higher power output, but are less robust to changes in the dominant wind direction.


2020 ◽  
Vol 1618 ◽  
pp. 032014
Author(s):  
Nicolas Kirchner-Bossi ◽  
Fernando Porté-Agel

Sign in / Sign up

Export Citation Format

Share Document