VIBRATION CONTROL OF SLENDER STRUCTURES WITH OPTIMIZED LIQUID COLUMN VIBRATION ABSORBERS

Author(s):  
Jéssica Carolina Barbosa Vieira ◽  
Thiago da Silva ◽  
Carlos Alberto Bavastri
2004 ◽  
Vol 130 (4) ◽  
pp. 478-485 ◽  
Author(s):  
B. Samali ◽  
E. Mayol ◽  
K. C. S. Kwok ◽  
A. Mack ◽  
P. Hitchcock

2021 ◽  
Author(s):  
Xingbao Huang ◽  
Xiao Zhang ◽  
Bintang Yang

Abstract This paper introduces an energy conversion inspired vibration control methodology and presents a representative prototype of tunable bi-stable energy converters. This work is concerned on improving the vibration absorption and energy conversion performance of tunable bi-stable clustered energy conversion inspired dynamic vibration absorbers (EC-DVAs). The deterministic parametric analysis of the energy transfer performance of clustered EC-DVAs is conducted. Firstly, nonlinear vibration behaviors including transient energy transfer and snap-through motions are studied, and then effects of EC-DVA number on vibration control is investigated. Furthermore, the optimal computation based on adjusting the length ratio (namely bi-stable potential barrier height) is developed to obtain the maximum energy conversion efficiency of clustered EC-DVAs and the minimum residual kinetic energy of the primary system considering different number of clustered EC-DVAs. Moreover, the optimal calculation based on optimal EC-DVA number is also developed to achieve the most excellent vibration absorption and energy conversion performance. Finally, the optimal calculation based on optimal mass ratio is conducted. Numerical simulations show that when the total mass ratio is constant the snap-through motions of each EC-DVA depend remarkably on EC-DVA number; the energy conversion efficiency and residual kinetic energy after dynamic length ratio optimization is independent on ambient input energy and EC-DVA number; The energy conversion efficiency and vibration absorption performance based on optimal EC-DVA number maintain high efficiency and stable when the ambient input energy or the potential energy of clustered EC-DVAs varies. The optimal mass ratio is large when the system’s potential barrier is too large and the ambient input energy is small. Therefore, the presented tunable bi-stable system of clustered EC-DVAs with appropriate bi-stable potential function and proposed optimization strategies is a potential alternative for vibration control of mechanical components exposed to varying impulses.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450053 ◽  
Author(s):  
FATHI DJEMAL ◽  
FAKHER CHAARI ◽  
JEAN LUC DION ◽  
FRANCK RENAUD ◽  
IMAD TAWFIQ ◽  
...  

Vibrations are usually undesired phenomena as they may cause discomfort, disturbance, damage, and sometimes destruction of machines and structures. It must be reduced or controlled or eliminated. One of the most common methods of vibration control is the use of the dynamic absorber. The paper is interested in the study of a nonlinear two degrees of freedom (DOF) model. To solve nonlinear equation of motion a high order implicit algorithm is proposed. It is based on the introduction of a homotopy, an implicit scheme of Newmark and the use of techniques of Asymptotic Numerical method (ANM). We propose also a regularization of the contact force to overcome the difficulty of the singularity in this model. A comparison will be presented between the results obtained by the proposed algorithm and those using the classical Newton–Raphson and Newmark time scheme.


Author(s):  
Hiroshi Matsuhisa ◽  
Rongrong Gu ◽  
Yongjing Wang ◽  
Osamu Nishihara ◽  
Susumu Sato

Sign in / Sign up

Export Citation Format

Share Document