PARAMETRIC POD-BASED MODEL ORDER REDUCTION OF MULTIBODY SYSTEM DYNAMICS BASED ON THE ABSOLUTE NODAL COORDINATE FORMULATION

Author(s):  
Matheus Basílio Rodrigues Fernandes ◽  
Thiago de Paula Sales ◽  
Domingos Rade ◽  
Andre Fernando de Castro da Silva
2020 ◽  
Vol 15 (10) ◽  
Author(s):  
Qinglong Tian ◽  
Peng Lan ◽  
Zuqing Yu

Abstract A new method of model-order reduction for the flexible multibody system which undergoes large deformation and rotation is proposed. At first, the flexible multibody system is modeled by absolute nodal coordinate formulation (ANCF), and then, the whole motion process of the system is divided into a series of quasi-static equilibrium configurations according to a given criterion. Afterward, motion equation is locally linearized based on the Taylor expansion. Therefore, the constant tangent stiffness matrix is obtained and does not need to be updated until the next configuration. Based on the locally linearized motion equation, the free-interface component mode synthesis (CMS) method is adopted to reduce the degrees-of-freedom (DOF) of the flexible multibody system molded by ANCF. The generalized-α integrator is used to solve the reduced motion equation. To verify the accuracy and efficiency of the proposed method, three examples including a free-falling pendulum, a flexible spinning beam and a deployable sail arrays are presented. Results show that the proposed method is able to reduce the computing time and maintain high accuracy.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document