scholarly journals A bi-level optimization model for grouping constrained storage location assignment problems

2021 ◽  
Author(s):  
Jing Xie ◽  
Yi Mei ◽  
Andreas T Ernst ◽  
Xiaodong Li ◽  
Andy Song

In this paper, a novel bi-level grouping optimization (BIGO) model is proposed for solving the storage location assignment problem with grouping constraint (SLAP-GC). A major challenge in this problem is the grouping constraint which restricts the number of groups each product can have and the locations of items in the same group. In SLAP-GC, the problem consists of two subproblems, one is how to group the items, and the other one is how to assign the groups to locations. It is an arduous task to solve the two subproblems simultaneously. To overcome this difficulty, we propose a BIGO. BIGO optimizes item grouping in the upper level, and uses the lower-level optimization to evaluate each item grouping. Sophisticated fitness evaluation and search operators are designed for both upper and lower level optimization so that the feasibility of solutions can be guaranteed, and the search can focus on promising areas in the search space. Based on the BIGO model, a multistart random search method and a tabu search algorithm are proposed. The experimental results on the real-world dataset validate the efficacy of the BIGO model and the advantage of the tabu search method over the random search method. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2021 ◽  
Author(s):  
Jing Xie ◽  
Yi Mei ◽  
Andreas T Ernst ◽  
Xiaodong Li ◽  
Andy Song

In this paper, a novel bi-level grouping optimization (BIGO) model is proposed for solving the storage location assignment problem with grouping constraint (SLAP-GC). A major challenge in this problem is the grouping constraint which restricts the number of groups each product can have and the locations of items in the same group. In SLAP-GC, the problem consists of two subproblems, one is how to group the items, and the other one is how to assign the groups to locations. It is an arduous task to solve the two subproblems simultaneously. To overcome this difficulty, we propose a BIGO. BIGO optimizes item grouping in the upper level, and uses the lower-level optimization to evaluate each item grouping. Sophisticated fitness evaluation and search operators are designed for both upper and lower level optimization so that the feasibility of solutions can be guaranteed, and the search can focus on promising areas in the search space. Based on the BIGO model, a multistart random search method and a tabu search algorithm are proposed. The experimental results on the real-world dataset validate the efficacy of the BIGO model and the advantage of the tabu search method over the random search method. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


2004 ◽  
Vol 8 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Kotaro HIRASAWA ◽  
Hiroyuki MIYAZAKI ◽  
Jinglu HU ◽  
Kenichi GOTO

2020 ◽  
Vol 25 ◽  
pp. 159-170
Author(s):  
Necati Ozbey ◽  
Celaleddin Yeroglu ◽  
Baris Baykant Alagoz ◽  
Norbert Herencsar ◽  
Aslihan Kartci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document