aggressive environment
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 126)

H-INDEX

14
(FIVE YEARS 5)

Author(s):  
M. A. Valiente Bermejo ◽  
L. Magniez ◽  
A. Jonasson ◽  
S. Selin ◽  
M. Frodigh ◽  
...  

AbstractTwo experimental FeCrAl alloy overlay welds on tube shields were exposed in the superheater of a full-size waste fired boiler for 6 months. The tube shields were in different tube lines and positions within the superheater chamber to investigate possible heterogeneities in the exposure environment. The visual inspection of the exposed tube shields and the corrosion-erosion rates calculated from the analysis of cross-sections showed that the mid-length roof location experienced the most aggressive environment. The compositional differences between the two experimental alloys were not found to be determinant in their performance under these specific exposure conditions. It was concluded that erosion had a decisive influence on the results. The identification of local differences within the superheater chamber is important when deciding on the material selection for the different areas and locations to be protected. The output of this study is therefore interesting for further design consideration of superheaters as well as for future planning of exposures.


2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Lamiaa M. Omer ◽  
Mohamed S. Gomaa ◽  
Waleed H. Sufe ◽  
Alaa A. Elsayed ◽  
Hany A. Elghazaly

AbstractThe durability of reinforced concrete (RC) pipes depends upon the corrosion resistance of the reinforcing steel and the resistance of concrete mixes against an aggressive environment. This research paper aims to compare the performance of R.C. pipes made of ordinary Portland cement (OPC) concrete mixtures with others made of two different geopolymer concrete mixes based on different ratios of granulated blast furnace slag (GBFS), fly ash (FA), and pulverized red brick (RB) subjected to three different environments, ambient, tap water (TW), and an aggressive environment, and a solution of 10% magnesium sulfates + 5% chloride (MS-CL). An accelerated corrosion setup has been applied to accelerate the corrosion process in the tested samples. The evaluation of change of compressive strength of concrete and microstructure of different mixes was investigated too. Fourier transform infrared (FTIR) spectroscopy has been studied on all pipes. Geopolymer concrete mixes based on 90% GBFS and 10% RB show better results in all cases. Geopolymer concrete mixes based on 63% GBFS, 27% FA, and 10% RB increase the concrete compressive strength in the magnesium sulfate and chloride environment by 5% compared to tap water. It can be concluded that the geopolymer concrete mixes produced of 90% GBFS and 10% RB perform well under all environments, and its microstructure shows stable behavior in an aggressive environment.


2021 ◽  
Vol 9 (4) ◽  
pp. 11-15
Author(s):  
Mikhail Berlinov ◽  
Marina Belinova ◽  
Roman Korol ◽  
Aleksandr Tvorogov

A method for calculating a reinforced concrete frame under rheological deformation conditions is proposed, taking into account degradation damage as a result of corrosion during long-term operation, reflecting their real work under the combined action of a load and an aggressive environment based on the modern phenomenological theory of deformation of an elastic-creeping body. The possibility of considering the processes of long-term deformation of reinforced concrete in conditions of long-term exploitation is shown. Analytical dependencies and a calculated example are given for the considered service life.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2040
Author(s):  
Munish Kumar ◽  
Ravi Kant ◽  
Suresh Chand ◽  
Ujjwal Prakash ◽  
Shankar Sehgal ◽  
...  

Corrosion behavior of FeAl-based alloys containing carbon produced through arc melting in argon atmosphere has been studied at 500 °C to 700 °C. The samples were tested in the aggressive environment of molten salts (80%V2O5/20%Na2SO4). The corrosion behavior was observed by weight change method and the layer products formed were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The different phase components were observed in the surface layer after the test in Fe-22Al alloy. A protective Al2O3 layer was confirmed for Fe-22Al alloy containing carbon only. However, an additional TiO layer was also observed in Fe-22Al alloy containing carbon with Ti addition. The microstructural and XRD examinations revealed that this additional TiO layer protects better against penetration of corrosive media. The corrosion resistance behavior of FeAl-based alloys were addressed on the basis of microstructural evidence.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012037
Author(s):  
P Figala ◽  
R Drochytka ◽  
R Hermann

Abstract This paper deals with the research of a new silicate-based repair mortar modified with selected secondary raw materials. The aim of this work is to develop a chemically resistant material suitable for use in an extremely aggressive environment of sewers. The monitored parameters include key physical-mechanical characteristics, resistance to sulphate ions and to the attack of aggressive biogenic sulfuric acid. Chemical resistance was tested by simulating the exposure environment in laboratory conditions, according to the methodology of DIN 19573. The obtained results show that by suitable modification of the reference mortar it is possible to maintain the values of physical-mechanical characteristics and improve the chemical resistance of test samples.


Author(s):  
S. Swarna Manjula ◽  
R. Surya Prakash

Concrete is a versatile material and can be extended to applications requiring to perform in aggressive environments. In these environments, concrete should be highly durable for longer service life. The present thesis is an effort directed towards the achieving high performance in concrete by using RHA as supplementary cementitious material. To achieve high Strength in the concrete, it is necessary to have better understanding of the behavior of constituent materials. Thus, the behavior of RHA in concrete in terms of efficiency was assessed through the results available from literature. A mix design method was suggested and a wide range of concretes varying from 85-87Mpa with replacement levels varying from 0 to 15 Percentage were attempted. These concretes could be produced with the mixing, compaction, curing procedures conventionally used and with the available RHA. A maximum strength of about 86Mpa was obtained which compares well or was even better with the results reported hitherto in literature.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6838
Author(s):  
Petr Lehner ◽  
Marie Horňáková ◽  
Kristýna Hrabová

Probabilistic procedures considering the durability with respect to corrosion of reinforcement caused by aggressive substances are widely applied; however, they are based on narrow assumptions. The aspects need to be evaluated both in terms of the search for suitable application of the various experimental results and in terms of their impact on the result of the stochastic assessment itself. In this article, sensitivity analysis was used as an ideal tool to prove how input parameters affect the results of the evaluation, with consideration of different types of concrete (ordinary or self-compacting with and without fibres). These concretes may be used in aggressive environments, as an industrial floor or as a part of the load-bearing bridge structure. An example of a reinforced concrete bridge deck was selected as the solved structure. The results show that in the case of a classic evaluation, a larger amount of fibre reports a lower resistance of concrete, which contradicts the assumptions. The sensitivity analysis then shows that self-compacting concrete is more sensitive to the values of the diffusion coefficient, and with the consideration of fibres, the effect is even greater.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6612
Author(s):  
Yaroslav Blikharskyy ◽  
Jacek Selejdak ◽  
Nadiia Kopiika ◽  
Rostyslav Vashkevych

A significant part of reinforced concrete structures is subjected to intensive environmental impact during operation. This can cause local destruction and failure of buildings if obligatory measures are not taken to protect them from corrosion. This is especially true for industrial buildings, where the environment could be contaminated with aggressive products or waste. An important issue is the development of methods for calculating the load-bearing capacity and serviceability of reinforced concrete structures with corrosion damage. The main reason for this is the necessity to determine the durability and reliability of buildings and structures and the estimation of their safe operation time. As corrosion damages of concrete are a critical issue, more detailed experimental studies are needed. This paper presents experimental studies of concrete prisms under the simultaneous action of an aggressive environment and a constant level of compressive force. In total, 32 prisms under different loading conditions and in different aggressive medium were tested. Samples were divided in series, for which different load levels were chosen (0.25fck, 0.35fck, 0.45fck). Additionally, control samples in the air and immersed in water were tested. During the experiment, different parameters were monitored and recorded: decrease of cross-sectional size, the temperature and environmental humidity. Results of the study showed that destruction occurred due to the presence of corrosion damages of concrete and a reduction of the cross-sectional area. The stresses in the concrete at the destruction stage were less than the value of the prism strength by 10–12%. It was established that along the contour of the section, there is a partially degraded layer of concrete of 1.5–3.7 mm thickness, with corrosion microcracks and corrosion products. Additionally, experimental and theoretical diagrams of concrete with corrosion damages were obtained and compared. The ultimate deformations of concrete with corrosion damage, which correspond to the prismatic strength of concrete, in comparison with undamaged concrete were lower by 11–18%. Therefore, the concrete strength is decreased during exploitation under loading in an aggressive environment, which needs to be taken into account during calculations.


2021 ◽  
Vol 325 ◽  
pp. 194-199
Author(s):  
Ámos Dufka ◽  
Tomáš Žlebek ◽  
Tomáš Melichar

The article deals with the influence of crystallization additives on the life of self-compacting concrete (so-called SCC concrete), which are exposed to chemically aggressive environments. The focus is not only on the effect of the crystallization additive on the characteristics of the capillary-pore structure of SCC concrete, but especially long life durability of self-compacting concrete (two years expozition). The effect of individual types of aggressive environment is assessed on the basis of a set of physico-mechanical and physico-chemical analyzes.


Sign in / Sign up

Export Citation Format

Share Document