Evolving Self-Adaptive Tabu Search Algorithm for Storage Location Assignment Problems

Author(s):  
Jing Xie ◽  
Yi Mei ◽  
Andy Song
2021 ◽  
Author(s):  
Jing Xie ◽  
Yi Mei ◽  
Andreas T Ernst ◽  
Xiaodong Li ◽  
Andy Song

In this paper, a novel bi-level grouping optimization (BIGO) model is proposed for solving the storage location assignment problem with grouping constraint (SLAP-GC). A major challenge in this problem is the grouping constraint which restricts the number of groups each product can have and the locations of items in the same group. In SLAP-GC, the problem consists of two subproblems, one is how to group the items, and the other one is how to assign the groups to locations. It is an arduous task to solve the two subproblems simultaneously. To overcome this difficulty, we propose a BIGO. BIGO optimizes item grouping in the upper level, and uses the lower-level optimization to evaluate each item grouping. Sophisticated fitness evaluation and search operators are designed for both upper and lower level optimization so that the feasibility of solutions can be guaranteed, and the search can focus on promising areas in the search space. Based on the BIGO model, a multistart random search method and a tabu search algorithm are proposed. The experimental results on the real-world dataset validate the efficacy of the BIGO model and the advantage of the tabu search method over the random search method. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
Jing Xie ◽  
Yi Mei ◽  
Andreas T Ernst ◽  
Xiaodong Li ◽  
Andy Song

In this paper, a novel bi-level grouping optimization (BIGO) model is proposed for solving the storage location assignment problem with grouping constraint (SLAP-GC). A major challenge in this problem is the grouping constraint which restricts the number of groups each product can have and the locations of items in the same group. In SLAP-GC, the problem consists of two subproblems, one is how to group the items, and the other one is how to assign the groups to locations. It is an arduous task to solve the two subproblems simultaneously. To overcome this difficulty, we propose a BIGO. BIGO optimizes item grouping in the upper level, and uses the lower-level optimization to evaluate each item grouping. Sophisticated fitness evaluation and search operators are designed for both upper and lower level optimization so that the feasibility of solutions can be guaranteed, and the search can focus on promising areas in the search space. Based on the BIGO model, a multistart random search method and a tabu search algorithm are proposed. The experimental results on the real-world dataset validate the efficacy of the BIGO model and the advantage of the tabu search method over the random search method. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Networks ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 322-340 ◽  
Author(s):  
Richard S. Barr ◽  
Fred Glover ◽  
Toby Huskinson ◽  
Gary Kochenberger

2014 ◽  
Vol 24 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Baozhen Yao ◽  
Ping Hu ◽  
Mingheng Zhang ◽  
Maoqing Jin

Abstract Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems (ATMISs). An automated incident detection system can effectively provide information on an incident, which can help initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident detection.


Sign in / Sign up

Export Citation Format

Share Document