scholarly journals Kinetic Monte Carlo  Modelling of Dissolution and  Passive Film Formation in  Fe-Cr Alloys

2021 ◽  
Author(s):  
◽  
Amanda Jeanne Parker

<p>Stainless steels differ from iron in that chromium content allows for the formation of a passive iron-chromium oxide film which is only nanometres in thickness, offering protection from the environment. While the composition of this oxide layer has been established, the mechanism of its formation is not well understood. In particular, the threshold level of chromium for oxide formation is significantly lower then the chromium content of the alloy itself. We present a Cahn Hilliard type analytical model that relates the onset of passivation to an instability which leads to a phase segregating current above 17% Cr in a bulk alloy. Proposing that this current could lead to Cr enrichment at a surface, we compare atomistic simulations with and without a surface driven Cr current. We implemented a kinetic Monte Carlo algorithm with extensions to allow for vacancy assisted nearest neighbour migration in a body centered cubic alloy, tracking a surface, dissolution and surface passivation. We compare the time evolution of Fe dissolution rates, Cr surface enrichment and the threshold for passive film formation and find that the Cr current has a significant impact on each of these properties.</p>

2021 ◽  
Author(s):  
◽  
Amanda Jeanne Parker

<p>Stainless steels differ from iron in that chromium content allows for the formation of a passive iron-chromium oxide film which is only nanometres in thickness, offering protection from the environment. While the composition of this oxide layer has been established, the mechanism of its formation is not well understood. In particular, the threshold level of chromium for oxide formation is significantly lower then the chromium content of the alloy itself. We present a Cahn Hilliard type analytical model that relates the onset of passivation to an instability which leads to a phase segregating current above 17% Cr in a bulk alloy. Proposing that this current could lead to Cr enrichment at a surface, we compare atomistic simulations with and without a surface driven Cr current. We implemented a kinetic Monte Carlo algorithm with extensions to allow for vacancy assisted nearest neighbour migration in a body centered cubic alloy, tracking a surface, dissolution and surface passivation. We compare the time evolution of Fe dissolution rates, Cr surface enrichment and the threshold for passive film formation and find that the Cr current has a significant impact on each of these properties.</p>


2005 ◽  
Vol 237-240 ◽  
pp. 671-676 ◽  
Author(s):  
Philippe Maugis ◽  
Frédéric Soisson ◽  
Ludovic Lae

We test the main approximations of the classical laws for nucleation, growth and coarsening by comparison with atomistic simulations of the kinetics of precipitation. We investigate the kinetics of phase separation in dilute A-B solid solutions by precipitation of B atoms in the Arich matrix. Classically, the kinetics is represented by the time evolution of the total number of particles and their mean radius. In this work, the kinetics is predicted by three types of models: (a) an Atomic-scale Kinetic Monte Carlo (AKMC) model based on a vacancy diffusion mechanism, (b) a Cluster Dynamics model, and (c) the MultiPreci model, based on the coupling of the classical laws of nucleation, growth and coarsening. Cluster Dynamics and the Multipreci model have been parameterized such that the thermodynamic and kinetic parameters (solubility, diffusion coefficient, interface energy) be identical to that of the AKMC. Under these conditions we find that the classical laws are in good agreement with the atomistic simulations as long as the thermodynamics of the solid solution remains strictly regular. As expected, Cluster Dynamics compares better with the atomistic simulations, especially if a precise description of the energetics of the smallest clusters is applied.


2010 ◽  
Vol 229 (9) ◽  
pp. 3214-3236 ◽  
Author(s):  
Aleksandar Donev ◽  
Vasily V. Bulatov ◽  
Tomas Oppelstrup ◽  
George H. Gilmer ◽  
Babak Sadigh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document